1. 难度:中等 | |
如果abc=1,求证++=1. |
2. 难度:中等 | |
已知+=,则+等于多少? |
3. 难度:中等 | |
一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度. |
4. 难度:中等 | |
已知M=、N=,用“+”或“-”连接M、N,有三种不同的形式,M+N、M-N、N-M,请你任取其中一种进行计算,并简求值,其中x:y=5:2. |
5. 难度:中等 | |
一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示: (1)求y与x之间的函数关系式; (2)“E”图案的面积是多少? (3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围. |
6. 难度:中等 | |
如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的端点. (1)求此函数的解析式,并写出自变量x的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例. |
7. 难度:中等 | |
如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积等于______. |
8. 难度:中等 | |
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值. |
9. 难度:中等 | |
如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数y在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上X轴于F. (1)求m,n的值; (2)求直线AB的函数解析式. |
10. 难度:中等 | |
清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;第三步:分别用3、4、5乘k,得三边长”. (1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长; (2)你能证明“积求勾股法”的正确性吗请写出证明过程. |
11. 难度:中等 | |
一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A.第4张 B.第5张 C.第6张 D.第7张 |
12. 难度:中等 | |
如图,甲,乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A处目测得点A与甲,乙楼顶B、C刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米. |
13. 难度:中等 | |
恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,A、B到直线x的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X于点P),P到A、B的距离之和S2=PA+PB. (1)求S1、S2,并比较它们的大小; (2)请你说明S2=PA+PB的值为最小; (3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值. |
14. 难度:中等 | |
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC. (1)求证:BG=FG; (2)若AD=DC=2,求AB的长. |
15. 难度:中等 | |
如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形. (1)当AB≠AC时,证明:四边形ADFE为平行四边形; (2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件. |
16. 难度:中等 | |
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF. (1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明; (2)判断四边形ABDF是怎样的四边形,并说明理由; (3)若AB=6,BD=2DC,求四边形ABEF的面积. |
17. 难度:中等 | |
如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F. (1)点D是△ABC的______心; (2)求证:四边形DECF为菱形. |
18. 难度:中等 | |
在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q. (1)当点P在线段ED上时(如图1),求证:BE=PD+PQ; (2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围); (3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长. |
19. 难度:中等 | |
如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长. |
20. 难度:中等 | |
已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED. 求证:AE平分∠BAD. |
21. 难度:中等 | |
如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10. (1)当折痕的另一端F在AB边上时,如图.求△EFG的面积; (2)当折痕的另一端F在AD边上时,如图.证明四边形BGEF为菱形,并求出折痕GF的长. |
22. 难度:中等 | |
(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹) (2)写出你的作法. |
23. 难度:中等 | |
如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB. (1)求证:①PE=PD;②PE⊥PD; (2)设AP=x,△PBE的面积为y. ①求出y关于x的函数关系式,并写出x的取值范围; ②当x取何值时,y取得最大值,并求出这个最大值. |
24. 难度:中等 | |
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断; (2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由; (3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值. |
25. 难度:中等 | |
为了帮助贫困失学儿童,宿迁市团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后取回本金,而把利息捐赠给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图. (1)求该学校的人均存款数; (2)已知银行一年定期存款的年利率是2.25%(“爱心储蓄”免收利息税),且每351元能提供给1位失学儿童一年的基本费用,那么该学校一学年能够帮助多少位失学儿童? |
26. 难度:中等 | |||||||||||||
如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图.教练组规定:体能测试成绩70分以上(包括70分)为合格. (1)请根据图中所提供的信息填写右表: (2)请从下面两个不同的角度对运动员体能测试结果进行判断: ①依据平均数与成绩合格的次数比较甲和乙,______的体能测试成绩较好; ②依据平均数与中位数比较甲和乙,______的体能测试成绩较好. ③依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.
|
27. 难度:中等 | |
如图所示,A、B两个旅游点从2001年至2005年“五•一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题: (1)B旅游点的旅游人数相对上一年,增长最快的是哪一年? (2)求A、B两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价; (3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少? |