1. 难度:中等 | |
在实数:,0,,π,中,无理数有( ) A.1个 B.2个 C.3个 D.4个 |
2. 难度:中等 | |
下列运算正确的是( ) A.2x2•3x2=6x4 B.2x2-3x2=1 C.2x2÷3x2=x2 D.2x2+3x2=5x4 |
3. 难度:中等 | |
己知1纳米=0.000000001米,则27纳米用科学记数法表示为( ) A.27×10-9 B.2.7×10-8 C.2.7×10-9 D.-2.7×108 |
4. 难度:中等 | |
如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是( ) A.(-1,1) B.(-1,2) C.(1,2) D.(2,1) |
5. 难度:中等 | |||||||||||
为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果
A.中位数6方 B.众数6方 C.极差8方 D.平均数5方 |
6. 难度:中等 | |
下列图象中,以方程-2x+y-2=0的解为坐标的点组成的图象是( ) A. B. C. D. |
7. 难度:中等 | |
若点(-2,y1)(-1,y2)、(1,y3)都在反比例函数y=-的图象上,则有( ) A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.yl>y3>y2 |
8. 难度:中等 | |
某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ) A.80元 B.100元 C.120元 D.160元 |
9. 难度:中等 | |
如图,直线与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P的个数是( ) A.2 B.3 C.4 D.5 |
10. 难度:中等 | |
如图,A1、A2、A3是抛物线y=ax2( a>0)上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C.A1、A2、A3三点的横坐标为连续整数n-1、n、n+1,则线段CA2的长为( ) A.a B.2a C.n D.n-1 |
11. 难度:中等 | |
关于x的不等式组的解集为0<x<2,那么a+b的值等于 . |
12. 难度:中等 | |
化简的结果是 . |
13. 难度:中等 | |
如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为 . |
14. 难度:中等 | |
如图,点A、B、C在⊙O上,AB∥CO,∠B=22°,则∠A= 度. |
15. 难度:中等 | |
如图所示的运算程序中,若开始输入的x值为18,我们发现第1次输出的结果为9,第2次输出的结果为12,…,第2011次输出的结果为 . |
16. 难度:中等 | |
如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 . |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E. (1)求证:△ABD∽△CED. (2)若AB=6,AD=2CD,求BE的长. |
19. 难度:中等 | |
为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某县教研室体育组搞了一个随机调查,调查内容是:“每天锻炼是否超过1小时及锻炼未超过1小时的原因”,他们随机调查了720名学生,所得的数据制成了如下的扇形统计图和频数分布直方图. 根据图示,请你回答以下问题: (1)“没时间”的人数是______,并补全频数分布直方图; (2)2006年丽水市中小学生约32万人,按此调查,可以估计2006年全市中小学生每天锻炼未超过1小时约有______万人; (3)如果计划2008年丽水市中小学生每天锻炼未超过1小时的人数降到3.84万人,求2006年至2008年锻炼未超过1小时人数的年平均降低的百分率是多少? |
20. 难度:中等 | |
如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号). |
21. 难度:中等 | |
小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示. (1)小李到达甲地后,再经过______小时小张到达乙地;小张骑自行车的速度是______千米/小时. (2)小张出发几小时与小李相距15千米? (3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案) |
22. 难度:中等 | |
小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去. (1)请用画树形图或列表的方法求小敏去看比赛的概率; (2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则. |
23. 难度:中等 | |
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径. (1)求证:AE与⊙O相切; (2)当BC=4,cosC=时,求⊙O的半径. |
24. 难度:中等 | |
已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0). (1)求二次函数的解析式; (2)求四边形BDEC的面积S; (3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由. |
25. 难度:中等 | |
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线. (1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有______; (2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹); (3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由. |