1. 难度:中等 | |
的值等于( ) A.3 B.-3 C.±3 D. |
2. 难度:中等 | |
下列运算正确的是( ) A.a2+a3=a5 B.a2•a3=a6 C.a3+a2=a D.(a2)3=a6 |
3. 难度:中等 | |
近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为( ) A.20.3×104人 B.2.03×105人 C.2.03×104人 D.2.03×103人 |
4. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为( ) A. B. C. D. |
5. 难度:中等 | |
一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A. B. C. D. |
6. 难度:中等 | |
抛物线y=x2-6x+5的顶点坐标为( ) A.(3,-4) B.(3,4) C.(-3,-4) D.(-3,4) |
7. 难度:中等 | |
已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( ) A.a>2 B.a<2 C.a<2且a≠l D.a<-2 |
8. 难度:中等 | |
已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是( ) A.都相似 B.都不相似 C.只有(1)相似 D.只有(2)相似 |
9. 难度:中等 | |
如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是( ) A. B. C. D. |
10. 难度:中等 | |
如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( ) ①四边形A2B2C2D2是矩形; ②四边形A4B4C4D4是菱形; ③四边形A5B5C5D5的周长是 ④四边形AnBnCnDn的面积是. A.①② B.②③ C.②③④ D.①②③④ |
11. 难度:中等 | |
如图,在△ABC中,D,E分别是边AC、BC的中点,若DE=4,则AB= . |
12. 难度:中等 | |
分解因式:a3-10a2+25a= . |
13. 难度:中等 | |
如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为 cm2. |
14. 难度:中等 | |
函数中x的取值范围是 . |
15. 难度:中等 | |
甲、乙、丙、丁四位同学围成一圈依序循环报数,规定: ①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需拍手的次数为 . |
16. 难度:中等 | |
设,,,…,. 设,则S= (用含n的代数式表示,其中n为正整数). |
17. 难度:中等 | |
解不等式组,并写出不等式组的整数解. |
18. 难度:中等 | |
解方程:x2-4x-1=0. |
19. 难度:中等 | |
已知a2+2ab+b2=0,求代数式a(a+4b)-(a+2b)(a-2b)的值. |
20. 难度:中等 | |
计算(-)÷. |
21. 难度:中等 | |
如图,在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=的图象的一个交点为A(-1,n). (1)求反比例函数y=的解析式; (2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标. |
22. 难度:中等 | |
如图,某数学课外活动小组测量电视塔AB的高度.他们借助一个高度为30m的建筑物CD进行测量,在点C处测得塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h. (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) |
23. 难度:中等 | |
从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率: (1)抽取1名,恰好是女生; (2)抽取2名,恰好是1名男生和1名女生. |
24. 难度:中等 | |
小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中 的折线表示小亮在整个行走过程中y与x的函数关系. (1)小亮行走的总路程是______m,他途中休息了______min; (2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少? |
25. 难度:中等 | |
已知双曲线:与抛物线:y=ax2+bx+c交于A(2,3)、B(m,2)、C(-3,n)三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A、点B、点C,并求出△ABC的面积. |
26. 难度:中等 | |
在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x米.(注:取 π=3.14) (1)试用含x的代数式表示y; (2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元; ①设该工程的总造价为W元,求W关于x的函数关系式; ②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由; ③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由. |