1. 难度:中等 | |
-5的倒数是( ) A. B.5 C.- D.-5 |
2. 难度:中等 | |
2011年3月5日,第十一届全国人民代表大会第四次会议在人民大会堂开幕,国务院总理温家宝作《政府工作报告》.报告指出我国2010年国内生产总值达到398000亿元.“398000”这个数据用科学记数法(保留两个有效数字)表示正确的是( ) A.3.98×105 B.3.98×106 C.4.0×105 D.4.0×106 |
3. 难度:中等 | |
已知⊙O1、⊙O2的半径分别为5cm、8cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系为( ) A.外离 B.相交 C.相切 D.内含 |
4. 难度:中等 | |
如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( ) A.①② B.②③ C.②④ D.③④ |
5. 难度:中等 | |
平面直角坐标系中,点A的坐标为(4,3),将线段OA绕原点O顺时针旋转90°得到OA′,则点A′的坐标是( ) A.(-4,3) B.(-3,4) C.(3,-4) D.(4,-3) |
6. 难度:中等 | |
如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是( ) A. B. C. D. |
7. 难度:中等 | |
2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是( ) A.32,31 B.31,32 C.31,31 D.32,35 |
8. 难度:中等 | |
如图是一个圆锥形冰淇淋,已知它的母线长是5cm,高是4cm,则这个圆锥形冰淇淋的底面面积是( ) A.10πcm2 B.9πcm2 C.20πcm2 D.πcm2 |
9. 难度:中等 | |
一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为( ) A.72° B.108°或144° C.144° D.72°或144° |
10. 难度:中等 | |
如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为( ) A. B. C. D. |
11. 难度:中等 | |
计算 2a-(-1+2a)= . |
12. 难度:中等 | |
已知x=1是方程x2-4x+=0的一个根,则m的值是 . |
13. 难度:中等 | |
函数y=中,自变量x的取值范围是 . |
14. 难度:中等 | |
分解因式:x2y-4xy+4y= . |
15. 难度:中等 | |
如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 . |
16. 难度:中等 | |
如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P4-P3= ;Pn-Pn-1= . |
17. 难度:中等 | |
已知a是一元二次方程x2+3x-2=0的实数根,求代数式的值. |
18. 难度:中等 | |
一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同. (1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. |
19. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,BC=2AD,F、G分别为边BC、CD的中点,连接AF,FG,过D作DE∥GF交AF于点E. (1)证明△AED≌△CGF; (2)若梯形ABCD为直角梯形,判断四边形DEFG是什么特殊四边形?并证明你的结论. |
20. 难度:中等 | |
如图:把一张给定大小的矩形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α=25°,求长方形卡片的周长.(精确到1mm,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5). |
21. 难度:中等 | |
在Rt△AFD中,∠F=90°,点B、C分别在AD、FD上,以AB为直径的半圆O 过点C,连接AC,将△AFC 沿AC翻折得△AEC,且点E恰好落在直径AB上. (1)判断:直线FC与半圆O的位置关系是______;并证明你的结论. (2)若OB=BD=2,求CE的长. |
22. 难度:中等 | |
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平. (1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元; (2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等; (3)求使用回收净化设备后两年的利润总和. |
23. 难度:中等 | |
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点. (1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法); (2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数; (3)如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长. |
24. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3). (1)求此函数的解析式及图象的对称轴; (2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒. ①当t为何值时,四边形ABPQ为等腰梯形; ②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值. |