1. 难度:中等 | |
如图,一共能数出( )个长方形(正方形也算作长方形) A.64 B.63 C.60 D.48 |
2. 难度:中等 | |
将一些半径为1的小圆放入半径为11的大圆内,使每个小圆都与大圆相内切,且这些小圆无重叠部分,则最多可以放入的小圆的个数是( ) A.30 B.31 C.32 D.33 |
3. 难度:中等 | |
1,2…30至少取出( )个不同的数,才能保证其中有一个为5的倍数. A.5 B.24 C.25 D.26 |
4. 难度:中等 | |
有2010名学生报数,从第一名开始从1至3报数,报到3的同学离开.每轮后其余同学向前靠拢,再按此规则进行报数,那么过了( )轮后,人数首次不多于397人. A.3 B.4 C.5 D.6 |
5. 难度:中等 | |
两个有序正整数,和为915,最大公约数为61,这两个数有( )种可能. A.4 B.6 C.8 D.14 |
6. 难度:中等 | |
请用0到9十个不同的数字组成一个能被11整除的最大和最小十位数之差为 . |
7. 难度:中等 | |
对某些正整数n,数2n和5n在十进制表示下首位数字相同.那么所有这样的首位数字为 . |
8. 难度:中等 | |
直角三角形ABC中,BC=AC,弧DEF圆心为A.已知两阴影面积相等,那么AD:DB= . |
9. 难度:中等 | |
方程|x2-3x+2|+|x2+2x-3|=11的所有实数根之和为 . |
10. 难度:中等 | |
x,y,z为正实数,且满足xyz=1,x+=5,y+=29,则z+的值为 . |
11. 难度:中等 | |
有两个三位数,和为999,把较大的数放在较小的数的左边所组成的六位数,正好等于把较小的数放在较大的数的左边所组成的六位数的6倍.求这两个数的差(大减小). |
12. 难度:中等 | |
已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD. |
13. 难度:中等 | |
求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖. (2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖. |