1. 难度:中等 | |
有理数-3的相反数是( ) A.3 B.-3 C. D.- |
2. 难度:中等 | |
温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,2010年,再解决60 000 000农村人口的安全饮水问题.将60 000 000用科学记数法表示应为( ) A.6×106 B.6×107 C.6×108 D.60×106 |
3. 难度:中等 | |
如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( ) A.32° B.58° C.68° D.60° |
4. 难度:中等 | |
下列计算正确的是( ) A. B.x5+x5=x10 C.x8÷x2=x4 D.(-a3)2=a6 |
5. 难度:中等 | |
小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( ) A. B. C. D. |
6. 难度:中等 | |
2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是( ) A.32,31 B.31,32 C.31,31 D.32,35 |
7. 难度:中等 | |
已知反比例函数y=(k≠0)的图象经过点(1,3),则此反比例函数的图象在( ) A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限 |
8. 难度:中等 | |
已知点A(m2-5,2m+3)在第三象限角平分线上,则m=( ) A.4 B.-2 C.4或-2 D.-1 |
9. 难度:中等 | |
如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是( ) A.O<x≤ B.-≤x≤ C.-1≤x≤1 D.x> |
10. 难度:中等 | |
如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是( ) A.DA=DE B.BD=CE C.∠EAC=90° D.∠ABC=2∠E |
11. 难度:中等 | |
反比例函数y=的图象在每个象限内,y随x的增大而增大,则k . |
12. 难度:中等 | |
如图,将一个含有45°角的三角尺绕顶点C顺时针旋转135°后,顶点A所经过的路线与顶点B所经过的路线长的比值为 . |
13. 难度:中等 | |
图象经过点P(cos60°,-sin30°)的正比例函数的表达式为 . |
14. 难度:中等 | |
如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是的中点,若扇形的半径为2,则图中阴影部分的面积等于 . |
15. 难度:中等 | |
如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是 . |
16. 难度:中等 | |
如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE= 度. |
17. 难度:中等 | |
如图,将矩形纸片ABCD沿AE折叠,使点B落在直角梯形AECD的中位线FG上,若AB=3cm,则AE的长为 cm. |
18. 难度:中等 | |
如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为 . |
19. 难度:中等 | |
求值:|-2|+2009-(-)-1+3tan30°. |
20. 难度:中等 | |
请先将下式化简,再选择一个适当的无理数代入求值.. |
21. 难度:中等 | |
一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示: (1)根据图象,直接写出y1,y2关于x的函数关系式. (2)分别求出当x=3,x=5,x=8时,两车之间的距离. (3)若设两车间的距离为S(km),请写出S关于x的函数关系式. (4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离. |
22. 难度:中等 | |
如图,在平面直角坐标系中,矩形OABC的顶点坐标为O(0,0),A(2,0),B(2,2),把矩形OABC绕点O逆时针方向旋转α度,使点B正好落在y轴正半轴上,得到矩形OA1B1C1. (1)求角α的度数; (2)求直线A1B1的函数关系式,并判断直线A1B1是否经过点B,为什么? |
23. 难度:中等 | |
如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0). (1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式; (2)问点A出发后多少秒两圆相切? |
24. 难度:中等 | |
某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元. (1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件? (2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案. |
25. 难度:中等 | |
如图,AB是半圆O上的直径,E是的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F.已知BC=8,DE=2. (1)求⊙O的半径; (2)求CF的长; (3)求tan∠BAD的值. |
26. 难度:中等 | |
如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424) |
27. 难度:中等 | |
如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F. (1)求该二次函数的解析式; (2)若设点P的横坐标为m,用含m的代数式表示线段PF的长; (3)求△PBC面积的最大值,并求此时点P的坐标. |