1. 难度:中等 | |
某天早晨的气温是7℃,中午上升了11℃,午夜下降了9℃,则午夜的气温是( ) A.5℃ B.-5℃ C.-3℃ D.9℃ |
2. 难度:中等 | |
函数y=的自变量x的取值范围是( ) A.x>-3 B.x≥-3 C.x<3 D.x≤3 |
3. 难度:中等 | |
我国居民身份证的编号有18位数字.其意义是:如在“512501…”中,“51”表示四川,“07”表示泸州,“01”表示江阳区,接下来的4位是出生的年份,后2位是出生的月份,再后2位是出生的日期,最后4位是编码.若某人的身份证的编号是:512501198708156623,则这个人出生的时间是( ) A.1987年8月15日 B.1966年2月3日 C.1987年8月1日 D.1981年5月6日 |
4. 难度:中等 | |
在 3.14,-,,,π 这五个数中,无理数的个数是( ) A.1 B.2 C.3 D.4 |
5. 难度:中等 | |
下列调查中,适合用普查方法的是( ) A.电视机厂要了解一批显象管的使用寿命 B.要了解我市居民的环保意识 C.要了解我市“阳山水蜜桃”的甜度和含水量 D.要了解你校数学教师的年龄状况 |
6. 难度:中等 | |
为了筹备班级联欢会,班长对全班50名同学喜欢吃哪几种水果作了民意调查,小明将班长的统计结果绘成如下的统计图,并得出四个结论,其中错误的是( ) A.一人可以喜欢吃几种水果 B.喜欢吃葡萄的人最多 C.喜欢吃苹果的人数是喜欢吃梨人数的3倍 D.喜欢吃香蕉的人数占全班人数的20% |
7. 难度:中等 | |
把m3-m分解因式为( ) A.m(m+1)2 B.m(m+1)2 C.m(m+1)(m-1) D.m(m+1)(1-m) |
8. 难度:中等 | |
如果圆锥的底面半径为3cm,母线长为4cm,那么它的侧面积等于( ) A.24πcm2 B.12πcm2 C.12cm2 D.6πcm2 |
9. 难度:中等 | |
将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( ) A. B. C. D. |
10. 难度:中等 | |
已知y=2x2的图象是抛物线,若抛物线不动,把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ) A.y=2(x-2)2+2 B.y=2(x+2)2-2 C.y=2(x-2)2-2 D.y=2(x+2)2+2 |
11. 难度:中等 | |
已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( ) A.sinB= B.cosB= C.tanB= D.cotB= |
12. 难度:中等 | |
在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是( ) A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2 C.(a-b)2=a2-2ab+b2 D.a2-b2=(a-b)2 |
13. 难度:中等 | |
用一把带有刻度的直角尺, ①可以画出两条平行的直线a与b,如图(1) ②可以画出∠AOB的平分线OP,如图(2) ③可以检验工件的凹面是否成半圆,如图(3) ④可以量出一个圆的半径,如图(4) 上述四个方法中,正确的个数是( ) A.4个 B.3个 C.2个 D.1个 |
14. 难度:中等 | |
在△ABC中,AD是BC边上的中线,G是重心.如果AG=6,那么线段DG的长为( ) A.2 B.3 C.6 D.12 |
15. 难度:中等 | |
如图所示,已知等腰梯形ABCD的中位线EF的长为6,腰AD的长为5,则该等腰梯形的周长为( ) A.11 B.16 C.17 D.22 |
16. 难度:中等 | |
如下图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图象中,能正确反映y与x的函数关系的是( ) A. B. C. D. |
17. 难度:中等 | |
下列四边形①等腰梯形,②正方形,③矩形,④菱形的对角线一定相等的是( ) A.①②③ B.①②③④ C.①② D.②③ |
18. 难度:中等 | |
如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为( ) A.4 B.4 C.2 D.2 |
19. 难度:中等 | |
某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是 ( ) A.30吨 B.31吨 C.32吨 D.33吨 |
20. 难度:中等 | |
初二(1)班有48位学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去苏州乐园的学生数”的扇形圆心角60°,则下列说法正确的是( ) A.想去苏州乐园的学生占全班学生的60% B.想去苏州乐园的学生有12人 C.想去苏州乐园的学生肯定最多 D.想去苏州乐园的学生占全班学生的 |
21. 难度:中等 | |
为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼( ) A.400条 B.500条 C.800条 D.1000条 |
22. 难度:中等 | |
如图,一块含有30°角的直角三角板ABC,在水平桌面上绕点C接顺时针方向旋转到A′B′C′的位置.若BC=15cm,那么顶点A从开始到结束所经过的路径长为( ) A.10πcm B.30πcm C.15πcm D.20πcm |
23. 难度:中等 | |
在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的坐标和它的极坐标存在一一对应关系,如点P的坐标(1,1)的极坐标为P[,45°],则极坐标Q[2,120°]的坐标为( ) A.(-,3) B.(-3,) C.(,3) D.(3,) |
24. 难度:中等 | |
如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( ) A.22.5°角 B.30°角 C.45°角 D.60°角 |
25. 难度:中等 | |
如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于( ) A.2:1 B.1:2 C.3:2 D.2:3 |
26. 难度:中等 | |
如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是( ) A. B. C. D. |
27. 难度:中等 | |
已知函数y=x2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是( ) A.-1≤x≤3 B.-3≤x≤1 C.x≥-3 D.x≤-1或x≥3 |
28. 难度:中等 | |
已知两个分式:,,其中x≠±2,则A与B的关系是( ) A.相等 B.互为倒数 C.互为相反数 D.A大于B |
29. 难度:中等 | |
下列说法,正确的是( ) A.一个游戏的中奖率是1%,做100次这样的游戏一定会中奖 B.为了解某品牌灯管的使用寿命,可以采用普查的方式 C.一组数据6,8,7,8,9,10的众数和平均数都是8 D.若甲组数据的方差s甲2=0.05,乙组数据的方差s乙2=0.1,则乙组数据比甲组数据稳定 |
30. 难度:中等 | |
如图是关于x的函数y=kx+b(k≠0)的图象,则不等式kx+b≤0的解集在数轴上可表示为( ) A. B. C. D. |
31. 难度:中等 | |
小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( ) A.106cm B.110cm C.114cm D.116cm |
32. 难度:中等 | |
如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为( ) A.64πcm2 B.112πcm2 C.144πcm2 D.152πcm2 |
33. 难度:中等 | |
刘强同学为了调查全市初中生人数,对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因 . |
34. 难度:中等 | |
如图,等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,AE=BE.BF⊥AE于F.判断线段BF与图中的哪条线段相等.先写出猜想,再加以证明. (1)猜想:BF=______; (2)证明. |
35. 难度:中等 | |
如图所示,四边形ABCD是正方形,G是BC上任意一点(点G与D、C不重合),AE⊥DG于E.CF∥AE交DG于F. (1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF. |
36. 难度:中等 | |
为了选拔合适队员参加2008年北京奥运会,某教练近期对甲、乙两运动员参加的某体育项目训练进行了五次模拟测试,成绩得分情况如图所示: (1)分别求出两人得分的平均数与方差; (2)根据图和(1)的结果,请你对两人的训练成绩作出评价,并选出参加奥运会人选. |
37. 难度:中等 | |||||||||||||||
某公司员工的月工资情况统计如下表:
(2)你认为用(1)中计算出的哪个数据来表示该公司员工的月工资水平更为合适? (3)请你画出一种你认为合适的统计图来表示上面表格中的数据. |
38. 难度:中等 | |
百舸竞渡,激情飞扬.为纪念爱国诗人屈原,邵阳市在资江河隆重举行了“海洋明珠杯”龙舟赛.图(十二)是甲、乙两支龙舟队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象,请你根据图象回答下列问题: (1)1.8分钟时,哪支龙舟队处于领先地位? (2)在这次龙舟比赛中,哪支龙舟队先到达终点? (3)比赛开始多少时间后,先到达终点的龙舟队就开始领先? |
39. 难度:中等 | |
某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象,根据图象回答下列问题: (1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围); (2)机器运行多少分钟时,第一个加工过程停止; (3)加工完这批工件,机器耗油多少升? |
40. 难度:中等 | |
制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃. (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间? |
41. 难度:中等 | |
一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险? |
42. 难度:中等 | |
如图,不透明圆锥体DEC放在直线BP所在的水平面上,且BP过底面圆的圆心,其高为m,底面半径为2m.某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m. (1)求∠B的度数; (2)若∠ACP=2∠B,求光源A距平面的高度. |
43. 难度:中等 | |
在某张航海图上,标明了三个观测点的坐标,如图,O(0,0)、B(6,0)、C(6,8),由三个观测点确定的圆形区域是海洋生物保护区. (1)求圆形区域的面积(π取3.14); (2)某时刻海面上出现-渔船A,在观测点O测得A位于北偏东45°,同时在观测点B测得A位于北偏东30°,求观测点B到A船的距离.(≈1.7,保留三个有效数字); (3)当渔船A由(2)中位置向正西方向航行时,是否会进入海洋生物保护区?通过计算回答. |
44. 难度:中等 | |
有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率. (2)你认为这个游戏公平吗?为什么? |
45. 难度:中等 | |
如图,是从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张. (1)用列举法列举所有可能出现的结果; (2)求摸出的两张牌的牌面数字之和不小于5的概率. |
46. 难度:中等 | |
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P(偶数); (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少? |
47. 难度:中等 | |
如图,⊙O1和⊙O内切于点A,AB为⊙O的直径,点O1在OA上,⊙O的弦BC切⊙O1于点D,两圆的半径R=4,r=3. (1)求BD的长; (2)求CD的长. |
48. 难度:中等 | |
如图,AB切⊙O于点B,OA交⊙O于C点,过C作DC⊥OA交AB于D,且BD:AD=1:2. (1)求∠A的正切值; (2)若OC=1,求AB及的长. |
49. 难度:中等 | |
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n). (1)求这个抛物线的解析式; (2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标. |
50. 难度:中等 | |
已知抛物线y=x2-x-2. (1)求抛物线顶点M的坐标; (2)若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围; (3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由. |
51. 难度:中等 | |
已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为t(秒). (1)当时间t为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2; (2)当点P、Q运动时,阴影部分的形状随之变化.设PQ与△ABC围成阴影部分面积为S(厘米2),求出S与时间t的函数关系式,并指出自变量t的取值范围; (3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由. |
52. 难度:中等 | |
抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C. (1)求顶点D的坐标(用a的代数式表示); (2)求抛物线的解析式; (3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由. |
53. 难度:中等 | |
一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花. (1)求整修后背水坡面的面积; (2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元? |
54. 难度:中等 | |
如图,在直角坐标系中,已知点P的坐标为(1,0),将线段OP按逆时针方向旋转45°,将其长度伸长为OP的2倍,得到线段OP1;再将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数) (1)求点P6的坐标; (2)求△P5OP6的面积; (3)我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来. |
55. 难度:中等 | |
已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=______,n=______. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第100个点的坐标为______. |
56. 难度:中等 | ||||||||||
某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如表:
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用) (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价) |
57. 难度:中等 | |
如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,…,观察图中的规律,求出第10个黑色梯形的面积S10= . |
58. 难度:中等 | |
某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足? |
59. 难度:中等 | |
如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D. (1)求l2的解析式; (2)求证:点D一定在l2上; (3)▱ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值. |
60. 难度:中等 | |
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C′. (1)求抛物线l2的函数关系式; (2)已知原点O,定点D(0,4),l2上的点P与l1上的点P′始终关于x轴对称,则当点P运动到何处时,以点D,O,P,P′为顶点的四边形是平行四边形? (3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30°的直角三角形?若存在,求出点M的坐标;若不存在,说明理由. |
61. 难度:中等 | |
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线l1的顶点为C(3,4),抛物线l2与l1关于x轴对称,顶点为C′. (1)求抛物线l2的函数关系式; (2)已知原点O,定D(0,4),l2上的点P与l1上的P′始终关于x轴对称,则当点P运动到何处时,以点D、O、P、P′为顶点的四边形是平行四边形? (3)设l2上的点M、N分别与l1上的点M′、N′始终关于x轴对称.是否存在点M、N(M在N的左侧),使四边形MNN´M´是正方形?若存在,求出点M的坐标;若不存在,说明理由. |
62. 难度:中等 | |
在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12). (1)求此二次函数的表达式; (2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由; (3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围. |
63. 难度:中等 | |
已知:如图,抛物线y=ax2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC. (1)求点C的坐标; (2)求图中阴影部分的面积; (3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由. |
64. 难度:中等 | |
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上. (1)求⊙P上劣弧AB的长; (2)求抛物线的解析式; (3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由. |
65. 难度:中等 | |
已知二次函数y=mx2+(m-3)x-3 (m>0) (1)求证:它的图象与x轴必有两个不同的交点; (2)这条抛物线与x轴交于A(x1,0)和B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积S; (3)在(2)的条件下,抛物线上是否存在点P使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出点P的坐标;若不存在,请说明理由. |
66. 难度:中等 | |
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC=α,∠CBE=β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. |
67. 难度:中等 | |
已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点. (1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标; (3)对于(2)中的点B,在抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由. |
68. 难度:中等 | |
已知:如图,△ABC中,CA=CB,点D为AC的中点,以AD为直径的⊙O切BC于点E,AD=2. (1)求BE的长; (2)过点D作DF∥BC交⊙O于点F,求DF的长. |
69. 难度:中等 | |
如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4). (1)求A′点的坐标; (2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式; (3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由. |