1. 难度:中等 | |
的倒数等于( ) A.-2 B.2 C. D. |
2. 难度:中等 | |
下列运算,正确的是( ) A.a•2a=2a B.(a3)2=a6 C.3a-2a=1 D.=-a2 |
3. 难度:中等 | |
如图,∠1的余角可能是( ) A. B. C. D. |
4. 难度:中等 | |
据2011年5月29日中央电视台报道,“限塑令”实施以来,全国每年大约少用塑料袋24 000 000 000个以上,将24 000 000 000用科学记数法表示为( ) A.24×109 B.2.4×109 C.2.4×1010 D.0.24×1011 |
5. 难度:中等 | |
如图,直角坐标系中有四个点,其中的三点在同一反比例函数的图象上,则不在这个图象上的点是( ) A.P点 B.Q点 C.R点 D.S点 |
6. 难度:中等 | |
如图,等边△ABC内接于⊙O,则∠AOB等于( ) A.120° B.130° C.140° D.150° |
7. 难度:中等 | |||||||||||||||||||||||
十名射箭运动员进行训练,每人射箭一次,成绩如下表:
A.9 B.8 C.6 D.10或9 |
8. 难度:中等 | |
一矩形纸片按图中(1)、(2)所示的方式对折两次后,再按(3)中的虚线裁剪,则(4)中的纸片展开铺平后的图形是( ) A. B. C. D. |
9. 难度:中等 | |
如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( ) A. B.2 C.3 D.4 |
10. 难度:中等 | |
如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是( ) A. B. C. D. |
11. 难度:中等 | |
-1,0,-5,-,这五个数中,最小的数是 . |
12. 难度:中等 | |
如图,在▱ABCD中,BE⊥AD于点E,若∠ABE=50°,则∠C= . |
13. 难度:中等 | |
分解因式:4a-a3= . |
14. 难度:中等 | |
在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=-2a+3b.如:1⊕5=-2×1+3×5=13.则不等式x⊕4<0的解集为 . |
15. 难度:中等 | |
根据图所示的程序计算,若输入x的值为64,则输出结果为 . |
16. 难度:中等 | |
两个全等的梯形纸片如图(1)摆放,将梯形纸片ABCD沿上底AD方向向右平移得到图(2).已知AD=4,BC=8,若阴影部分的面积是四边形A′B′CD的面积的,则图(2)中平移距离A′A= . |
17. 难度:中等 | |
计算:(-1)2011+2tan60°+2-+|1-|. |
18. 难度:中等 | |
如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点. (1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1; (2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号) |
19. 难度:中等 | |
如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中. (1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率; (2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率. |
20. 难度:中等 | |||||||||||||
某校要选举一名学生会主席,先对甲、乙、丙三名候选人进行了笔试和面试,成绩如下表;又进行了学生投票,每个学生都投了一张选票,且选票上只写了三名候选人中的一名,每张选票记0.5分.对选票进行统计后,绘有如图(1),图(2)尚不完整的统计图. 笔试、面试成绩统计表
(2)补全图(2)的条形统计图; (3)求三名候选人笔试成绩的极差; (4)根据实际情况,学校将笔试、面试、学生投票三项得分按2:4:4的比例确定每人的最终成绩,高者当选,请通过计算说明,哪位候选人当选. |
21. 难度:中等 | |
某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成. (1)甲、乙两队单独完成各需多少天? (2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费. |
22. 难度:中等 | |
如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上. (1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE. (2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个______结论是否成立,若成立,请给予证明;若不成立,请说明理由. |
23. 难度:中等 | |
甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分. (1)乙车的速度为______千米/时; (2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围); (3)求出两城之间的路程,及t为何值时两车相遇; (4)当两车相距300千米时,求t的值. |
24. 难度:中等 | |
如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A. 解答下列问题: (1)位置Ⅰ中的MN与数轴之间的距离为______;位置Ⅱ中的半⊙P与数轴的位置关系是______; (2)求位置Ⅲ中的圆心P在数轴上表示的数; (3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积; (4)求OA的长. [(2),(3),(4)中的结果保留π]. |
25. 难度:中等 | |
如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=-x2+bx+c经过原点O和点P.已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3). (1)求c,b并写出抛物线对称轴及y的最大值(用含有n的代数式表示); (2)求证:抛物线的顶点在函数y=x2的图象上; (3)若抛物线与直线AD交于点N,求n为何值时,△NPO的面积为1; (4)若抛物线经过正方形区域ABCD(含边界),请直接______写出n的取值范围. (参考公式:y=ax2+bx+c(a≠0)的顶点坐标是(-,) |