1. 难度:中等 | |
据中央电视台“朝闻天下”报道,北京市目前汽车拥有量约为3100000辆,则3100000用科学记数法表示为( ) A.0.31×107 B.31×105 C.3.1×105 D.3.1×106 |
2. 难度:中等 | |
下列计算中,正确的是( ) A.x•x3=x3 B.x3-x= C.x3÷x=x2 D.x3+x3=x6 |
3. 难度:中等 | |
如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是( ) A. B. C. D. |
4. 难度:中等 | |
某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是( ) A. B. C. D. |
5. 难度:中等 | |
已知甲乙两组数据的平均数都是5,甲组数据的方差S2甲=,乙组数据的方差S2乙=,则( ) A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲乙两组数据的波动大小不能比较 |
6. 难度:中等 | |
反比例函数:y=-(k为常数,k≠0)的图象位于( ) A.第一,二象限 B.第一,三象限 C.第二,四象限 D.第三,四象限 |
7. 难度:中等 | |
如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是( ) A. B. C. D. |
8. 难度:中等 | |
在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是( ) A. B. C. D. |
9. 难度:中等 | |
一个圆锥的高为,侧面展开图是半圆,则圆锥的侧面积是( ) A.9π B.18π C.27π D.39π |
10. 难度:中等 | |
任何一个正整数n都可以进行这样的分【解析】 n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是( ) A.1 B.2 C.3 D.4 |
11. 难度:中等 | |
函数中,自变量x的取值范围是 . |
12. 难度:中等 | |
分解因式:a3-a= . |
13. 难度:中等 | |
一组数据35,35,36,36,37,38,38,38,39,40的极差是 . |
14. 难度:中等 | |
如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′上,EC′交AD于点G,已知∠EFG=58°,那么∠BEG= 度. |
15. 难度:中等 | |
写出不等式组的整数解是 . |
16. 难度:中等 | |
如图所示,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=,则⊙O的直径等于 . |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
先化简,再求值:÷(x-1-),其中x=. |
19. 难度:中等 | |
如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE. |
20. 难度:中等 | |
小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只. “字母棋”的游戏规则为: ①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回; ②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋; ③相同棋子不分胜负. (1)若小玲先摸,问小玲摸到C棋的概率是多少? (2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少? (3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大? |
21. 难度:中等 | |
某县在实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲、乙两个工程队分别从A、B两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度. |
22. 难度:中等 | |
2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M、N两地之间修建一条道路.已知:如图C点周围180m范围内为文物保护区,在MN上点A处测得C在A的北偏东60°方向上,从A向东走500m到达B处,测得C在B的北偏西45°方向上. (1)NM是否穿过文物保护区?为什么?(参考数据:≈1.732) (2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工作需要多少天? |
23. 难度:中等 | |
如图,已知二次函数y=ax2-4x+c的图象经过点A和点B. (1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离. |
24. 难度:中等 | |
如图,在直角坐标系中,已知点P的坐标为(1,0),将线段OP按逆时针方向旋转45°,将其长度伸长为OP的2倍,得到线段OP1;再将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数) (1)求点P6的坐标; (2)求△P5OP6的面积; (3)我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来. |
25. 难度:中等 | |
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C在坐标轴上,OA=60cm,OC=80cm.动点P从点O出发,以5cm/s的速度沿x轴匀速向点C运动,到达点C即停止.设点P运动的时间为ts. (1)过点P作对角线OB的垂线,垂足为点T.求PT的长y与时间t的函数关系式,并写出自变量t的取值范围; (2)在点P运动过程中,当点O关于直线AP的对称点O'恰好落在对角线OB上时,求此时直线AP的函数解析式; (3)探索:以A,P,T三点为顶点的△APT的面积能否达到矩形OABC面积的?请说明理由. |