1. 难度:中等 | |
如果b>a+c,那么a,b,c三个实数必定( ) A.|b|>|a+c| B.b<-a+c C.b2>(a+c)2 D.不能确定 |
2. 难度:中等 | |
为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是( ) A.15000名学生是总体 B.1000名学生的视力是总体的一个样本 C.每名学生是总体的一个个体 D.以上调查是普查 |
3. 难度:中等 | |
将直径为16cm的圆形铁皮,做成四个相同圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的高为( ) A.4cm B.cm C.cm D.cm |
4. 难度:中等 | |
在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是( ) A. B. C. D. |
5. 难度:中等 | |
如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M,N两点,若点M的坐标是(-4,-2),则点N的坐标为( ) A.(-1,-2) B.(1,-2) C.(-1.5,2) D.(1.5,-2) |
6. 难度:中等 | |
如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( ) A. B. C. D. |
7. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①a<b<c;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正确结论的个数为( ) A.1 B.2 C.3 D.4 |
8. 难度:中等 | |
如图,点E、F是以线段BC为公共弦的两条圆弧的中点,BC=6.点A、D分别为线段EF、BC上的动点.连接AB、AD,设BD=x,AB2-AD2=y,下列图象中,能表示y与x的函数关系的图象是( ) A. B. C. D. |
9. 难度:中等 | |
因式分【解析】 3x3-6x2y+3xy2= . |
10. 难度:中等 | |
若关于x的方程有增根,则m= . |
11. 难度:中等 | |
如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3,而且6=1+2+3,所以6是完全数.大约2200多年前,欧几里德提出:如果2n-1是质数,那么2n-1(2n-1)是一个完全数.请你根据这个结论写出6之后的下一个完全数 . |
12. 难度:中等 | |
如图,已知点A在双曲线y=上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC于B,则△AOC的面积= ;△ABC的周长为 . |
13. 难度:中等 | |
如图,▱ABCD中,E是CD中点,AE与对角线BD交于G,AE的延长线交BC的延长线于F,则DG:BG= ,△CEF与△ABF周长比为 ,△DEG与△CEF的面积比为 . |
14. 难度:中等 | |
如图,在平面直角坐标系中,函数(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为 . |
15. 难度:中等 | |
已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是 . |
16. 难度:中等 | |
在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点. ①若A、O、C三点在同一直线上,且∠ABO=2α,则= (用含有α的式子表示); ②固定△AOB,将△COD绕点O旋转,PM最大值为 . |
17. 难度:中等 | |
计算:2sin60°-+-(-1)2010 |
18. 难度:中等 | |
解不等式组.并把解集在数轴上表示出来. |
19. 难度:中等 | |
阅读下列材料: 将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠) 请你参考以上做法解决以下问题: (1)将图4的平行四边形分割成面积相等的八个三角形; (2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明. |
20. 难度:中等 | |
如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO. (1)求证:BD是⊙O的切线; (2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积. |
21. 难度:中等 | |
某高校青年志愿者协会对报名参加2010年上海世博会志愿者选拔活动的学生进行了一次与世博会知识有关的测试,小亮对自己班报名参加测试的同学成绩按三个等级作了统计,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题: (1)请将两幅统计图补充完整; (2)小亮班共有______名学生参加了这次测试;如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有______人将参加下一轮测试;若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试; (3)按规定:成绩在60~74分为一般,在75~89分为良好,在90~100分为优秀,那么小亮班上所有参加测试的同学的平均分x的范围应为______.(计算结果数据精确到0.1) |
22. 难度:中等 | |
如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少? |
23. 难度:中等 | |
(1)已知:如图1,△ABC中,分别以AB、AC为一边向△ABC外作正方形ABGE和ACHF,直线AN⊥BC于N,若EP⊥AN于P,FQ⊥AN于Q.判断线段EP、FQ的数量关系,并证明; (2)如图2,梯形ABCD中,AD∥BC,分别以两腰AB、CD为一边向梯形ABCD外作正方形ABGE和DCHF,线段AD的垂直平分线交线段AD于点M,交BC于点N,若EP⊥MN于P,FQ⊥MN于Q.(1)中结论还成立吗?请说明理由. |
24. 难度:中等 | |
如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A⇒B⇒C方向以每秒2cm的速度运动,到点C停止,点Q沿A⇒D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm2. (1)当0≤x≤1时,求y与x之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x值; (3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围; (4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象. |
25. 难度:中等 | |
如图,在平面直角坐标系xOy中,点A(,1)关于x轴的对称点为C,AC与x轴交于点B,将△OCB沿OC翻折后,点B落在点D处. (1)求点C、D的坐标; (2)求经过O、D、B三点的抛物线的解析式; (3)若抛物线的对称轴与OC交于点E,点P为线段OC上一点,过点P作y轴的平行线,交抛物线于点Q. ①当四边形EDQP为等腰梯形时,求出点P的坐标; ②当四边形EDQP为平行四边形时,直接写出点P的坐标. |