1. 难度:中等 | |
下列计算中,正确的是( ) A.3a+a=3a B.a6÷a3=a2 C.(2a)-1=-2a D.(-2a2)3=-8a6 |
2. 难度:中等 | |
给出下列命题:其中,真命题的个数是( ) (1)平行四边形的对角线互相平分;(2)对角线相等的四边形是矩形; (3)菱形的对角线互相垂直平分;(4)对角线互相垂直的四边形是菱形. A.4 B.3 C.2 D.1 |
3. 难度:中等 | |
下列各函数中,y随x增大而增大的是( ) ①y=-x+1;②y=-(x<0);③y=x2+1;④y=2x-3. A.①② B.②③ C.②④ D.①③ |
4. 难度:中等 | |
如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于( ) A.12cm B.6cm C.8cm D.3cm |
5. 难度:中等 | |
如果反比例函数y=的图象如图所示,那么二次函数y=kx2-k2x-1的图象大致为( ) A. B. C. D. |
6. 难度:中等 | |
如图,AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为( ) A.米 B.米 C.6•cos52°米 D. |
7. 难度:中等 | |
某几何体的三视图如下所示,则该几何体可以是( ) A. B. C. D. |
8. 难度:中等 | |
现有2008年奥运会福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是( ) A. B. C. D. |
9. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象如图所示,则点(ac,bc)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
10. 难度:中等 | |
直线y=x+与x轴,y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线第一次相切时,点P的横坐标为( ) A.-1 B.-2 C.-3 D.-4 |
11. 难度:中等 | |
因式分【解析】 x3-4xy2= . |
12. 难度:中等 | |
当m= 时,关于x的分式方程=-1无解. |
13. 难度:中等 | |
如图,已知正方形纸片ABCD的边长为8,⊙O的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA恰好与⊙O相切于点A′(△EFA′与⊙O除切点外无重叠部分),延长FA′交CD边于点G,求A′G的长. |
14. 难度:中等 | |
如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 . |
15. 难度:中等 | |
如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是 . |
16. 难度:中等 | |
对于每个非零自然数n,抛物线y=x2-x+与x轴交于An、Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2009B2009的值是 . |
17. 难度:中等 | |
(1)计算:2cos30°-+(-2)2×(-1)-|-|; (2)解方程:2x2-5x-7=0. |
18. 难度:中等 | |
解不等式组,并把它的解集在数轴上表示出来. |
19. 难度:中等 | |
如图,一次函数y=-x-2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=. (1)求k的值; (2)连接OP、AQ,求证:四边形APOQ是菱形. |
20. 难度:中等 | |
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由. |
21. 难度:中等 | |
某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题: (1)求在这次活动中一共调查了多少名学生; (2)在扇形统计图中,求“教师”所在扇形的圆心角的度数; (3)补全两幅统计图. |
22. 难度:中等 | |
如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. (1)求证:CE=CF; (2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长. |
23. 难度:中等 | |
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求证:BC=AB; (3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值. |
24. 难度:中等 | |
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平. (1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元; (2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等; (3)求使用回收净化设备后两年的利润总和. |
25. 难度:中等 | |
如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D. (1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值. |