1. 难度:中等 | |
已知tan(α-20°)=,则锐角α的度数是( ) A.60° B.45° C.50° D.75° |
2. 难度:中等 | |
某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误的是( ) A.众数是85 B.平均数是85 C.中位数是80 D.极差是15 |
3. 难度:中等 | |
如图,△ABC中,P是AB边上的一点,连接CP.添加一个条件使△ACP与△ABC相似.下列添加的条件中不正确的是( ) A.∠APC=∠ACB B.∠ACP=∠B C.AC2=AP•AB D.AC:PC=AB:BC |
4. 难度:中等 | |
如图,二次函数y=ax2+2x-3的图象与x轴有一个交点在0和1之间(不含0和1),则a的取值范围是( ) A.a>1 B.0<a<1 C.a> D.a>-且a≠0 |
5. 难度:中等 | |
已知m、n是关于x的方程x2-6x+k=0的两个实数根,则m2n2-m-n的值是( ) A.k-6 B.k+6 C.k2-6 D.k2+6 |
6. 难度:中等 | |
如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是( ) A.2 B.2+ C.4 D.4+2 |
7. 难度:中等 | |
如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是( ) A. B. C. D. |
8. 难度:中等 | |
正整数按如图所示的规律排列.则第10行,第11列的数字是( ) A.98 B.106 C.110 D.118 |
9. 难度:中等 | |
百步亭社区调查某组居民双休日的学习状况,采取了下列调查方式:a:从一幢高层住宅楼中选取200名居民;b:从不同住宅楼中随机选取200名居民;c:选取该组内的200名在校学生.并将最合理的调查方式得到的数据制成扇形统计图和部分数据的频数分布直方图.以下结论:①上述调查方式最合理的是b;②在这次调查的200名居民中,在家学习的有60人;③估计该组2000名居民中双休日学习时间不少于4小时的人数是1420人;④小明的叔叔住在该组,那么双休日他去叔叔家时,正好叔叔不学习的概率是0.1. 其中正确的结论是( ) A.①③ B.②④ C.①③④ D.①②③④ |
10. 难度:中等 | |
如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论①∠AED=∠ADC;②=;③AC•BE=12;④3BF=4AC,其中结论正确的个数有( ) A.1个 B.2个 C.3个 D.4个 |
11. 难度:中等 | |
已知(a2+b2)2-(a2+b2)-6=0,则a2+b2= . |
12. 难度:中等 | |
如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为 . |
13. 难度:中等 | |
如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上. ①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是 ; ②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB= . |
14. 难度:中等 | |
如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2-2mx+n2=0有实数根的概率为 . |
15. 难度:中等 | |
如图,直线y=kx+b经过A(0,4)和B(-2,0)两点,则不等式组0<kx+b≤-2x的解集为 . |
16. 难度:中等 | |
如图,A、M是反比例函数图象上的两点,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.BM:DM=8:9,当四边形OADM的面积为时,k= . |
17. 难度:中等 | |
(1)计算:-++6sin60°; (2)先化简,再求值:(+1)÷,其中a=2+. |
18. 难度:中等 | |
解不等式组,并把解集在数轴上表示出来,并写出该不等式组的最大整数解. |
19. 难度:中等 | |
如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,则PB=______. |
20. 难度:中等 | |
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A. (1)求tan∠BOA的值; (2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标; (3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,-2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标. |
21. 难度:中等 | |
城市规划期间,欲拆除一电线杆AB(如图),已知距电线杆AB水平距离14m的D处有一大坝,背水坝CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)(≈1.732,≈1.414) |
22. 难度:中等 | |
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元? (2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案? (3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利? |
23. 难度:中等 | |
如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE. (1)求证:直线DE是⊙O的切线; (2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值. |
24. 难度:中等 | |
已知∠MAN,AC平分∠MAN. (1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC; (2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC; ②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α的三角函数表示),并给出证明. |
25. 难度:中等 | |
如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=. (1)求这个二次函数的表达式. (2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由. (3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度. (4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积. |