1. 难度:中等 | |
下列计算正确的是( ) A.(a3)2=a6 B.a+2a2=3a2 C.a3•a2=a6 D.a9÷a3=a3 |
2. 难度:中等 | |
下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. |
3. 难度:中等 | |
2011年4月28日,国家统计局公布了第六次全国人口普查结果,总人口为1 339 000 000人,将1 339 000 000用科学记数法表示为( ) A.1.339×108 B.13.39×108 C.1.339×109 D.1.339×1010 |
4. 难度:中等 | |
由方程组可得出x与y的关系式是( ) A.x+y=9 B.x+y=3 C.x+y=-3 D.x+y=-9 |
5. 难度:中等 | |
已知⊙O1和⊙O2的半径分别为2和5,如果两圆的位置关系为外离,那么圆心距O1O2的取值范围在数轴上表示正确的是( ) A. B. C. D. |
6. 难度:中等 | |
如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是( ) A.把△ABC向右平移6格 B.把△ABC向右平移4格,再向上平移1格 C.把△ABC绕着点A顺时针方向90°旋转,再右平移7格 D.把△ABC绕着点A逆时针方向90°旋转,再右平移7格 |
7. 难度:中等 | |
如图,等腰梯形ABCD中,AD∥BC,AB=DC=1,BD平分∠ABC,BD⊥CD,则AD+BC等于( ) A.2 B.3 C.4 D.5 |
8. 难度:中等 | |
一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为( ) A.75cm2 B.(25+25)cm2 C.(25+)cm2 D.(25+)cm2 |
9. 难度:中等 | |
如图是从一幅扑克牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是( ) A. B. C. D. |
10. 难度:中等 | |
已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( ) A. B. C. D. |
11. 难度:中等 | |
下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x-1=2x+5,其中正确的是( ) A. B. C. D. |
12. 难度:中等 | |
如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的( ) A. B. C. D. |
13. 难度:中等 | |
,则xy= . |
14. 难度:中等 | |
方程x2-2=0的根是 . |
15. 难度:中等 | |
将如图所示的正方体的展开图重新折叠成正方体后,和“应”字相对面上的汉字是 . |
16. 难度:中等 | |
如图,三个半径都为3cm的圆两两外切,切点分别为D、E、F,则EF的长为 cm. |
17. 难度:中等 | |
把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是 °. |
18. 难度:中等 | |
如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2011次变换后所得的A点坐标是 . |
19. 难度:中等 | |
先化简再求值,其中a=+1. |
20. 难度:中等 | |
如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上. (1)求反比例函数的关系式; (2)直接写出菱形OABC的面积. |
21. 难度:中等 | |
在今年法国网球公开赛中,我国选手李娜在决赛中成功击败对手夺冠,称为获得法国网球公开赛冠军的亚洲第一人.某班体育委员就本班同学对该届法国网球公开赛的了解程度进行全面调查统计,收集数据后绘制了两幅不完整的统计图,如图(1)和图(2).根据图中的信息,解答下列问题: (1)该班共有______名学生; (2)在图(1)中,“很了解”所对应的圆心角的度数为______; (3)把图(2)中的条形图形补充完整. |
22. 难度:中等 | |
由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元. (1)今年甲型号手机每台售价为多少元? (2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案? (3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值? |
23. 难度:中等 | |
某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,BC∥AD,BE⊥AD,斜坡AB长为26米,坡角∠BAD=68°.为了减缓坡面防止山体滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡. (1)求改造前坡顶到地面的距离BE的长(精确到0.1米); (2)如果改造时保持坡脚A不动,坡顶B沿BC向左移11米到F点处,问这样改造能确保安全吗? (参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,sin58°12′≈0.85,tan49°30′≈1.17) |
24. 难度:中等 | |
如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G. (1)求证:AD是⊙O的切线; (2)如果⊙O的半径是6cm,EC=8cm,求GF的长. |
25. 难度:中等 | |
如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R. (1)如图1,当点P为线段EC中点时,易证:PR+PQ=(不需证明). (2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想. |
26. 难度:中等 | |
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动. (1)求CD的长; (2)若点P以1cm/s速度运动,点Q以2cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围; (3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围. |