1. 难度:中等 | |
-3的倒数是( ) A. B. C.± D.3 |
2. 难度:中等 | |
据有关资料显示,今年日本仅地震造成的经济损失就达近16万亿日元,约合人民币12800亿元,这个数字用科学记数法可表示为( ) A.1.28×104元 B.1.28×108元 C.1.28×1010元 D.1.28×1012元 |
3. 难度:中等 | |
如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( ) A.40° B.30° C.20° D.10° |
4. 难度:中等 | |
已知x<1,则化简的结果是( ) A.x-1 B.x+1 C.-x-1 D.1- |
5. 难度:中等 | |
从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( ) A.20 B.22 C.24 D.26 |
6. 难度:中等 | |
将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( ) A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 |
7. 难度:中等 | |
如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是( ) A.3x-2y+3.5=0 B.3x-2y-3.5=0 C.3x-2y+7=0 D.3x+2y-7=0 |
8. 难度:中等 | |
如图,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径为( ) A. B. C. D. |
9. 难度:中等 | |
设A=x+y,其中x可取-1、2,y可取-1、-2、3.用画树状图或列表法求出A是正值的概率为( ) A. B. C. D. |
10. 难度:中等 | |
如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是( ) A. B. C. D. |
11. 难度:中等 | |
如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是 . |
12. 难度:中等 | |
方程的解是x= . |
13. 难度:中等 | |
如图,⊙O是△ABC的外接圆,AB=AC,⊙O的切线AP交BO的延长线于点P.若⊙O的半径R=5,BC=8,则AP= . |
14. 难度:中等 | |
用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多 枚棋子. |
15. 难度:中等 | |
如图1,正方形网格中有一个平行四边形(各小正方形的顶点叫做格点),请把图1中的平行四边形分割成四个全等的四边形(要求:各个顶点都在格点上,在图1中画出分割线),并把所得的四个全等的四边形在图2中拼成一个轴对称图形,使所得图形的各个顶点都落在格点上. |
16. 难度:中等 | |
如图,已知点A、B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=______. |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
解不等式组: |
19. 难度:中等 | |
如图,△ABC中,AB=AC,∠BAC=90°,D、E是BC上的两点,且∠DAE=45°.将△AEC绕着点A顺时针旋转90°后,得到△AFB,连接DF. (1)请猜想DF与DE之间有何数量关系? (2)证明你猜想的结论. |
20. 难度:中等 | |
为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了两幅不完整的统计图,请根据图中提供的信息,解答下面的问题: (1)此次共调查了多少名同学? (2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数; (3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师? |
21. 难度:中等 | |
如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414) |
22. 难度:中等 | |
已知关于x的方程x2-2(k-3)x+k2-4k-1=0. (1)若这个方程有实数根,求k的取值范围; (2)若这个方程有一个根为1,求k的值; (3)若以方程x2-2(k-3)x+k2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数的图象上,求满足条件的m的最小值. |
23. 难度:中等 | |
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500. (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) |
24. 难度:中等 | |
在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2. (1)求直线AC及抛物线的函数表达式; (2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标; (3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切. |