1. 难度:中等 | |
-的绝对值是( ) A.-2 B.- C.2 D. |
2. 难度:中等 | |
下面四个几何体中,左视图是四边形的几何体共有( ) A.1个 B.2个 C.3个 D.4个 |
3. 难度:中等 | |
反比例函数y=(k≠0)的图象经过点(-2,3),则该反比例函数图象在( ) A.第一,三象限 B.第二,四象限 C.第二,三象限 D.第一,二象限 |
4. 难度:中等 | |
未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为 ( ) A.0.85×104亿元 B.8.5×103亿元 C.8.5×104亿元 D.85×102亿元 |
5. 难度:中等 | |
下列说法正确的是( ) A.某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 B.随机抛掷一枚均匀的硬币,落地后正面一定朝上 C.在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖 D.在平面内,平行四边形的两条对角线一定相交 |
6. 难度:中等 | |
下列运算中,不正确的是( ) A.a3+a3=2a3 B.a2•a3=a5 C.2a3÷a2=2a D.(-a3)2=a9 |
7. 难度:中等 | |
如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是( ) A.13 B.26 C.47 D.94 |
8. 难度:中等 | |
如图,直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是( ) A.x<3 B.x>3 C.x>0 D.x<0 |
9. 难度:中等 | |
在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是( ) A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内 C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外 |
10. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为( ) A. B. C. D.2 |
11. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②c>0;③b2-4ac>0;④a-b+c<0,其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个 |
12. 难度:中等 | |
课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A.第3天 B.第4天 C.第5天 D.第6天 |
13. 难度:中等 | |
分解因式:9x2-1= . |
14. 难度:中等 | |
若x1,x2是方程x2+x-1=0的两个根,则x12+x22= . |
15. 难度:中等 | |
如图是绍兴市行政区域图,若上虞市区所在地用坐标表示为(1,2),诸暨市区所在地用坐标表示为(-5,-2),那么嵊州市区所在地用坐标可表示为 . |
16. 难度:中等 | |
如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1:0.5,则山的高度为 米. |
17. 难度:中等 | |
如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是 . |
18. 难度:中等 | |
(1)计算: (2)如图,四边形ABCD是菱形,点E、F分别是边AD、CD的中点.求证:BE=BF. |
19. 难度:中等 | |
(1)解方程: (2)如图所示,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE.求 证:△ABE∽△ADC. |
20. 难度:中等 | |
在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示). (1)小明的这三件文具中,可以看做是轴对称图形的是______(填字母代号); (2)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少? |
21. 难度:中等 | |
某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件. (1)求A、B两种纪念品的进价分别为多少? (2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少? |
22. 难度:中等 | |
已知一次函数y=kx+b(k≠0)和反比例函数的图象交于点A(1,1). (1)求两个函数的解析式; (2)若点B是x轴上一点,且△AOB是直角三角形,求B点的坐标. (3)在(2)条件中,把直角三角形改成等腰三角形,直接写出B点的坐标. |
23. 难度:中等 | |
如图:直线y=-x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且平行于y轴的直线交于D点.点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒). (1)当0<t<12时,求S与t之间的函数关系式; (2)求(1)中S的最大值; (3)当t>0时,若点(10,10)落在正方形PQMN的内部,求t的取值范围. |
24. 难度:中等 | |
如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=. (1)求这个二次函数的表达式. (2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由. (3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度. (4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积. |