1. 难度:中等 | |
如果等边三角形的边长为a,那么它的内切圆半径为( ) A. B. C. D. |
2. 难度:中等 | |
商店出售下列形状的地砖:①正方形;②长方形;③正五边形;④正六边形;⑤正八边形.如果要求只选购其中一种地砖镶嵌平面,则可供选择的地砖有( ) A.1种 B.2种 C.3种 D.4种 |
3. 难度:中等 | |
观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….通过观察,用作所发现的规律确定212的个位数字是( ) A.2 B.4 C.6 D.8 |
4. 难度:中等 | |
花园内有一块边长为a的正方形土地,园艺师设计了四种不同的图案,如下图的A、B、C、D所示,其中的阴影部分用于种植花草.种植花草部分面积最大的图案是( )(说明:A、B、C中圆弧的半径均为,D中圆弧的半径为a) A. B. C. D. |
5. 难度:中等 | |
如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是( ) A.1:2 B.1:4 C.1:5 D.1:6 |
6. 难度:中等 | |
如图,抛物线y=ax2+bx+c,OA=OC,下列关系中正确的是( ) A.ac+1=b B.ab+1=c C.bc+1=a D.+1=c |
7. 难度:中等 | |
如图,在矩形ABCD中,点E为边BC的中点,AE⊥BD,垂足为点O,则的值等于( ) A. B. C. D. |
8. 难度:中等 | |
如图,直线y=与双曲线y=(x>0)交于点A、将直线y=向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k的值为( ) A.2 B.6 C.12 D.8 |
9. 难度:中等 | |
直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为( ) A.x>1 B.x<1 C.x>-2 D.x<-2 |
10. 难度:中等 | |
观察下列计算:•(+1)=(-1)(+1)=1, (+)(+1)=[(-1)+(-)](+1)=2, (++)(+1)=[(-1)+(-)+(-)](+1)=3, … 从以上计算过程中找出规律,并利用这一规律进行计算: (+++…+)(+1)的值为( ) A.2008 B.2010 C.2011 D.2009 |
11. 难度:中等 | |
观察下列各式:1=12,1+3=4=22,1+3+5=9=32…根据观察到的规律可得1+3+5+7+…+99= . |
12. 难度:中等 | |
已知:(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出bn的表达式bn= .(用含n的代数式表示) |
13. 难度:中等 | |
如图,△ABC中,∠ACB=90°,∠B=30°,以C为圆心,CA为半径的圆交AB于D点,若AC=6,则的长为 . |
14. 难度:中等 | |
已知等腰三角形ABC内接于半径为5的⊙O中,如果底边BC的长为8,那么底角的正切值是 . |
15. 难度:中等 | |
图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为 cm3.(计算结果保留π). |
16. 难度:中等 | |
如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最小值为 . |
17. 难度:中等 | |
如图,一张纸对折一次有一条折痕,对折两次有3条折痕,对折n次有 条折痕.(对折时每次折痕与上次的折痕保持平行) |
18. 难度:中等 | |
定义新运算“*”,规则:a*b=,如1*2=2,*.若x2+x-1=0的两根为x1,x2,则x1*x2= . |
19. 难度:中等 | |
如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= ,= . |
20. 难度:中等 | |
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是 . |
21. 难度:中等 | |
已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2. (1)图中哪个三角形与△FAD全等?证明你的结论; (2)探索线段BF、FG、EF之间的关系,并说明理由. |
22. 难度:中等 | |
如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D. (1)求该一次函数的解析式; (2)求tan∠OCD的值; (3)求证:∠AOB=135度. |
23. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒. (1)求BC的长; (2)当MN∥AB时,求t的值; (3)试探究:t为何值时,△MNC为等腰三角形. |
24. 难度:中等 | |
如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立; (1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请说明理由. (2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明. |
25. 难度:中等 | |
已知抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线y=x+5经过D、M两点. (1)求此抛物线的解析式; (2)连接AM、AC、BC,试比较∠MAB和∠ACB的大小,并说明你的理由. |
26. 难度:中等 | |
已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由. |