1. 难度:中等 | |
下列计算正确的是( ) A.(-8)-8=0 B.(-)×(-2)=1 C.-(-1)=1 D.|-2|=-2 |
2. 难度:中等 | |
一个几何体的主视图、左视图、俯视图完全相同,它一定是( ) A.圆柱 B.圆锥 C.球体 D.长方体 |
3. 难度:中等 | |
温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是( ) A.3.6×107 B.3.6×106 C.36×106 D.0.36×108 |
4. 难度:中等 | |
如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于( ) A.55° B.60° C.65° D.70° |
5. 难度:中等 | |
某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下: 对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( ) A.甲运动员得分的极差大于乙运动员得分的极差 B.甲运动员得分的中位数大于乙运动员得分的中位数 C.甲运动员的得分平均数大于乙运动员的得分平均数 D.甲运动员的成绩比乙运动员的成绩稳定 |
6. 难度:中等 | |
已知函数y=(x-a)(x-b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是( ) A. B. C. D. |
7. 难度:中等 | |
一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是( ) A.a4>a2>a1 B.a4>a3>a2 C.a1>a2>a3 D.a2>a3>a4 |
8. 难度:中等 | |
图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是( ) A.2n B.4n C.2n+1 D.2n+2 |
9. 难度:中等 | |
Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,则c等于( ) A.acosA+bsinB B.acosB+bcosA C. D. |
10. 难度:中等 | |
甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( ) A.12天 B.13天 C.14天 D.15天 |
11. 难度:中等 | |
函数中,自变量x的取值范围是 . |
12. 难度:中等 | |
分解因式:x2y-4xy+4y= . |
13. 难度:中等 | |
点P(1,2)关于x轴的对称点P1的坐标是 . |
14. 难度:中等 | |
若x1,x2是方程x2+x-1=0的两个根,则x12+x22= . |
15. 难度:中等 | |
在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是 . |
16. 难度:中等 | |
如图,△OPQ的边长为2的等边三角形,若反比例函数的图象过点P,则它的关系式是 . |
17. 难度:中等 | |
如图,已知圆锥的母线长OA=8,底面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到了A点,求小虫爬行的最短路线的长. |
18. 难度:中等 | |
如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是 . |
19. 难度:中等 | |
(1)解不等式组,并把解集在数轴上表示出来 (2)已知x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值. |
20. 难度:中等 | ||||||||||
由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至24:00为用电高峰期,电价为a元/度;每天0:00至7:00为用电平稳期,电价为b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:
(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应在什么范围? |
21. 难度:中等 | |||||||||||||||||||||||||
2011年5月9日至14日,德州市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:
(1)m=______,n=______,x=______,y=______; (2)在扇形图中,C等级所对应的圆心角是______度; (3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人? |
22. 难度:中等 | |
为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元. (1)甲、乙两个工程队单独完成各需多少天? (2)请你设计一种符合要求的施工方案,并求出所需的工程费用. |
23. 难度:中等 | |
某兴趣小组用高为1.2米的仪器测量建筑物CD的高度.如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为β,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为α.测得A,B之间的距离为4米,tanα=1.6,tanβ=1.2,试求建筑物CD的高度. |
24. 难度:中等 | |
●观察计算 当a=5,b=3时,与的大小关系是______ |
25. 难度:中等 | |
在直角坐标系xOy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A. (1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由. (2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时: ①求出点A,B,C的坐标. ②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由. |