1. 难度:中等 | |
2-1的相反数是( ) A. B.- C.2 D.-2 |
2. 难度:中等 | |
下列计算正确的是( ) A.2+4=6 B.=4 C.÷=3 D.=-3 |
3. 难度:中等 | |
如图所示零件的左视图是( ) A. B. C. D. |
4. 难度:中等 | |
2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A.30.876×109元 B.3.0876×1010元 C.0.30876×1011元 D.3.0876×1011元 |
5. 难度:中等 | |
如图,把线段AB平移,使得点A到达点C(4,2),点B到达点D,那么点D的坐标是( ) A.(7,3) B.(6,4) C.(7,4) D.(8,4) |
6. 难度:中等 | |
某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( ) A.7,7 B.8,7.5 C.7,7.5 D.8,6.5 |
7. 难度:中等 | |
如图,⊙O中,弦AB的长为6cm,圆心O到AB的距离为4cm,则⊙O的半径长为( ) A.3cm B.4cm C.5cm D.6cm |
8. 难度:中等 | |
若2ym+5xn+3与-3x2y3是同类项,则mn=( ) A. B. C.1 D.-2 |
9. 难度:中等 | |
一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A.18个 B.15个 C.12个 D.10个 |
10. 难度:中等 | |
关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于( ) A.1 B.2 C.1或2 D.0 |
11. 难度:中等 | |
小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A.37.2分钟 B.48分钟 C.30分钟 D.33分钟 |
12. 难度:中等 | |
如图,第四象限的角平分线OM与反比例函数y=(k≠0)的图象交于点A,已知OA=,则该函数的解析式为( ) A.y= B.y=- C.y= D.y=- |
13. 难度:中等 | |
化简:= . |
14. 难度:中等 | |
已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是 .(结果保留π) |
15. 难度:中等 | |
如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是 . |
16. 难度:中等 | |
如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF= 度. |
17. 难度:中等 | |
如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3,而且6=1+2+3,所以6是完全数.大约2200多年前,欧几里德提出:如果2n-1是质数,那么2n-1(2n-1)是一个完全数.请你根据这个结论写出6之后的下一个完全数 . |
18. 难度:中等 | |
(1)解方程:x2-x-5=0. (2)若不等式组整数解是关于x的方程2x-4=ax的根,求a的值. |
19. 难度:中等 | |
(1)已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD. (2)如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°.过圆心O作OD⊥BC交弧BC于点D,连接DC,求∠DCB的度数. |
20. 难度:中等 | |
有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率. (2)你认为这个游戏公平吗?为什么? |
21. 难度:中等 | ||||||||||
某厂工人小王某月工作的部分信息如下: 信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表:
根据以上信息,回答下列问题: (1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分; (2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件. |
22. 难度:中等 | |
如图所示,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A⇒D⇒C⇒B到达.现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,则现在从A地到B地可比原来少走多少路程(结果精确到0.1km.参考数据:≈1.41,sin37°≈0.60,cos37°≈0.80) |
23. 难度:中等 | |
如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y. (1)求点D到BC的距离DH的长; (2)求y关于x的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由. |
24. 难度:中等 | |
如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8. (1)当∠AFB=60°时,△ABF沿着直线AF折叠,折叠后,落在平面内G点处,求G点的坐标. (2)当F运动到什么位置时,△AEF的面积最小,最小为多少? (3)当△AEF的面积最小时,直线EF与y轴相交于点M,P点在x轴上,⊙P与直线EF相切于点M,求P点的坐标. |