1. 难度:中等 | |
在-2、0、1、3这四个数中比0小的数是( ) A.-2 B.0 C.1 D.3 |
2. 难度:中等 | |
下列计算中,正确的是( ) A.|-2|=-2 B. C.a3•a2=a5 D.2x2-x= |
3. 难度:中等 | |
如图所示的几何体的左视图是( ) A. B. C. D. |
4. 难度:中等 | |
把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( ) A. B. C. D. |
5. 难度:中等 | |
一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( ) A.x>0 B.x<0 C.x>2 D.x<2 |
6. 难度:中等 | |
已知等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( ) A.50° B.80° C.50°或80° D.40°或65° |
7. 难度:中等 | |
某电视台报道,截止到2010年5月5日,慈善总会已接受支援玉树地震灾区的捐款15510000元.将15510000用科学记数法表示为( ) A.0.1551×108 B.1551×104 C.1.551×107 D.15.51×106 |
8. 难度:中等 | |
图中的两个三角形是位似图形,它们的位似中心是( ) A.点P B.点O C.点M D.点N |
9. 难度:中等 | |
如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( ) A.120° B.90° C.60° D.30° |
10. 难度:中等 | |
同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6.下列事件中是必然事件的是( ) A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数和不小于2 C.两枚骰子朝上一面的点数均为偶数 D.两枚骰子朝上一面的点数均为奇数 |
11. 难度:中等 | |
如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中第1个黑色形由3个正方形组成,第2个黑色形由7个正方形组成,…那么组成第6个黑色形的正方形个数是( ) A.22 B.23 C.24 D.25 |
12. 难度:中等 | |
如图,记抛物线y=-x2+1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…Pn-1,过每个分点作x轴的垂线,分别与抛物线交于点Q1,Q2,…,Qn-1,再记直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面积分别为S1,S2,…,这样就有S1=,S2=,…;记W=S1+S2+…+Sn-1,当n越来越大时,你猜想W最接近的常数是( ) A. B. C. D. |
13. 难度:中等 | |
如图所示,请写出能判定CE∥AB的一个条件 . |
14. 难度:中等 | |
若(x+)2=9,则(x-)2的值为 . |
15. 难度:中等 | |
如图,是北京奥运会、残奥会赛会志愿者申请人来源的统计数据,请你计算:志愿者申请人的总数为 万;其中“京外省区市”志愿者申请人数在总人数中所占的百分比约为 %(精确到0.1%),它所对应的扇形的圆心角约为 (度)(精确到度). |
16. 难度:中等 | |
如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g. |
17. 难度:中等 | |
如图①,O1,O2,O3,O4为四个等圆的圆心,A,B,C,D为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,O1,O2,O3,O4,O5为五个等圆的圆心,A,B,C,D,E为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 .(答案不唯一) |
18. 难度:中等 | |
已知x=-2,求的值. |
19. 难度:中等 | |
某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D型号种子的粒数是______; (2)请你将图2的统计图补充完整; (3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率. |
20. 难度:中等 | |
在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务.问接到指示后,该部队每天加固河堤多少米? |
21. 难度:中等 | |
如图,某拦河坝截面的原设计方案为:AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m.为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m) |
22. 难度:中等 | |
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN. |
23. 难度:中等 | |
某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x元.求: (1)房间每天的入住量y(间)关于x(元)的函数关系式; (2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式; (3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? |
24. 难度:中等 | |
如图,在直角坐标系中,半圆直径为OC,半圆圆心D的坐标为(0,2),四边形OABC是矩形,点A的坐标为(6,0). (1)若过点P(2,0)且与半圆D相切于点F的切线分别与y轴和BC边交于点H与点E,求切线PF所在直线的解析式; (2)若过点A和点B的切线分别与半圆相切于点P1和P2(点P1、P2与点O、C不重合),请求P1、P2点的坐标并说明理由.(注:第(2)问可利用备用图作答). |