1. 难度:中等 | |
下列运算正确的是( ) A.x3+x2=x5 B.x3-x2= C.x3÷x2= D.x3•x2=x6 |
2. 难度:中等 | |
荆州市政府2006年全面实施“工业兴市”战略,实现了经济持续快速增长.全市当年财政收入达到24.4亿元.请将这个数据用科学记数法表示出来是( ) A.24.4×108元 B.2.44×108元 C.2.44×109元 D.2.44×1010元 |
3. 难度:中等 | |
一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t+2t2,若滑到坡底的时间为4秒,则此人下降的高度为( ) A.72m B.36m C.36m D.18m |
4. 难度:中等 | |
如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是( ) A.25° B.30° C.35° D.45° |
5. 难度:中等 | |
若关于x的方程x2+2(k-1)x+k2=0有实数根,则k的取值范围是( ) A.k< B.k≤ C.k> D.k≥ |
6. 难度:中等 | |
下图所示的几何体的俯视图是( ) A. B. C. D. |
7. 难度:中等 | |
如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) A. B. C. D. |
8. 难度:中等 | |
如图,P是Rt△ABC的斜边BC上异于B,C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( ) A.1条 B.2条 C.3条 D.4条 |
9. 难度:中等 | |
如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是( )cm. A.7 B. C. D.14 |
10. 难度:中等 | |
如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC在直线EF上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图象大致是( ) A. B. C. D. |
11. 难度:中等 | |
计算:•cos45°-(2-π)-()-1= . |
12. 难度:中等 | |
关于x的不等式3x-2a≤-2的解集如图所示,则a的值是 . |
13. 难度:中等 | |
如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点 .(P1至P4点) |
14. 难度:中等 | |
如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空: 出发的早,早了 小时, 先到达,先到 小时,电动自行车的速度为 km/h,汽车的速度为 km/h. |
15. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2= . |
16. 难度:中等 | |
下图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为 . |
17. 难度:中等 | |
如图是与杨辉三角有类似性质的-三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= ,d= . |
18. 难度:中等 | |
如图,时钟的钟面上标有1,2,3,…,12共12个数,一条直线把钟面分成了两部分.请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是 和 和 . |
19. 难度:中等 | |
有一道题“先化简,再求值:,其中x=-.”小玲做题时把“x=-”错抄成了“x=”,她最后的计算结果是否正确______.(填“是”或“否”) |
20. 难度:中等 | |
如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=,BC=1,连接BF,分别交AC、DC、DE于点P、Q、R. (1)求证:△BFG∽△FEG,并求出BF的长; (2)观察图形,请你提出一个与点P相关的问题,并进行解答.(根据提出问题的层次和解答过程评分) |
21. 难度:中等 | |
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1. (1)在图中画出△A1OB1; (2)求经过A,A1,B1三点的抛物线的解析式. |
22. 难度:中等 | |
如图所示,A、B两个旅游点从2001年至2005年“五•一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题: (1)B旅游点的旅游人数相对上一年,增长最快的是哪一年? (2)求A、B两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价; (3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少? |
23. 难度:中等 | |
如图,已知直线L与⊙O相切于点A,直径AB=6,点P在L上移动,连接OP交⊙O于点C,连接BC并延长BC交直线L于点D. (1)若AP=4,求线段PC的长; (2)若△PAO与△BAD相似,求∠APO的度数和四边形OADC的面积(答案要求保留根号). |
24. 难度:中等 | |
某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2). (1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本) (2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式; (3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元? |
25. 难度:中等 | |
如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s). (1)当x=______时,PQ⊥AC,x=______时,PQ⊥AB; (2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式为______ |