1. 难度:中等 | |
下列各组数中,互为相反数的是( ) A.2和 B.sin30°和 C.和 D.2-1和 |
2. 难度:中等 | |||||||||||||
人民商场对上周女装的销售情况进行了统计,如下表所示:
A.平均数 B.中位数 C.众数 D.方差 |
3. 难度:中等 | |
从分别写有数字:-4,-3,-2,-1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是( ) A. B. C. D. |
4. 难度:中等 | |
如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为( ) A.30° B.45° C.60° D.75° |
5. 难度:中等 | |
若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是( ) A.y1<y2<y3 B.y3<y1<y2 C.y2<y3<y1 D.y3<y2<y1 |
6. 难度:中等 | |
下列四个命题:(1)如果一条直线上的两个不同的点到另一条直线的距离相等,那么这两条直线平行;(2)反比例函数的图象是轴对称图形,且只有一条对称轴;(3)等腰三角形一腰上的高等于腰长的一半,则底角等于75°;(4)相等的圆周角所对的弧相等.其中错误的命题有( ) A.4个 B.3个 C.2个 D.1个 |
7. 难度:中等 | |
不等式组(x为未知数)无解,则函数图象与x轴( ) A.相交于两点 B.没有交点 C.相交于一点 D.相交于一点或没有交点 |
8. 难度:中等 | |
如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为( ) A. B. C. D. |
9. 难度:中等 | |
如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积记为S.点N是正方形ABCD内任一点,把N点到四个顶点A,B,C,D的距离均不小于1的概率记为P,则S=( ) A.(4-π)P B.4(1-P) C.4P D.(π-1)P |
10. 难度:中等 | |
如图已知A1,A2,A3,…An是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分别过点A1,A2,A3,…An′作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,最后记△Pn-1Bn-1Pn(n>1)的面积为Sn,则Sn=( ) A. B. C. D. |
11. 难度:中等 | |
函数y=中,自变量x的取值范围是 . |
12. 难度:中等 | |
如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为 cm2. |
13. 难度:中等 | |
刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是 . |
14. 难度:中等 | |
如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为 cm2. |
15. 难度:中等 | |
如图,⊙P过O、A(0,6)、C(2,0),半径PB⊥PA,双曲线恰好经过B点,则k的值是 . |
16. 难度:中等 | |
已知直线l:y=-x+(n是不为零的自然数).当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=-x+与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2;…依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn.则S1= .S1+S2+S3…+Sn= . |
17. 难度:中等 | |
下面是按一定规律排列的一列数: 第1个数:; 第2个数:; 第3个数:; …; (1)分别计算这三个数的结果(直接写答案) (2)写出第2010个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果. |
18. 难度:中等 | |
阅读理解题: 定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(5+i)×(3-4i)=19-17i. (1)填空:i3=______,i4=______. (2)计算:(3+i)2; (3)试一试:请利用以前学习的有关知识将化简成a+bi的形式. |
19. 难度:中等 | |
观察与思考:阅读下列材料,并解决后面的问题. 在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作 AD⊥BC于D(如图1),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题. (1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=______;AC=______ |
20. 难度:中等 | |
问题背景: 在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积. (1)请你将△ABC的面积直接填写在横线上______; 思维拓展: (2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积; 探索创新: (3)若△ABC三边的长分别为、、(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积. |
21. 难度:中等 | |
如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N. (1)求证:MN是⊙O的切线; (2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长. |
22. 难度:中等 | |
操作:如图①,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图①画出一对以点O为对称中心的全等三角形. 根据上述操作得到的经验完成下列探究活动: 探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并证明你的结论; 探究二:如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的长度. |
23. 难度:中等 | |
如图,已知平面直角坐标系xOy中,点A(2,m),B(-3,n)为两动点,其中m>1,连接OA,OB,OA⊥OB,作BC⊥x轴于C点,AD⊥x轴于D点. (1)求证:mn=6; (2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式; (3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:2?若存在,求出直线l对应的函数关系式;若不存在,请说明理由. |