1. 难度:中等 | |
-的倒数是 . |
2. 难度:中等 | |
如图,数轴上表示数的点是 . |
3. 难度:中等 | |
正五边形的一个内角的度数是 . |
4. 难度:中等 | |
2006年4月21日,胡锦涛总书记在美国耶鲁大学演讲时谈到,我国国内生产总值从1978年的1473亿美元增长到2005年的72 225亿美元.若将2005年的国内生产总值用四舍五入法保留三个有效数字,其近似值用科学记数法表示为 亿美元. |
5. 难度:中等 | |
若点在反比例函数的图象上,则k= . |
6. 难度:中等 | |
“太阳每天从东方升起”,这是一个 事件.(填“确定”或“不确定”) |
7. 难度:中等 | |
如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是 .(添加一个条件即可,不添加其它的点和线). |
8. 难度:中等 | |
如图,已知∠AOB和射线O′B′,用尺规作图法作∠A′O′B′=∠AOB(要求保留作图痕迹). |
9. 难度:中等 | |
下列运算中,正确的是( ) A.2+=2 B.x6÷x3=x2 C.2-1=-2 D.a3•(-a2)=-a5 |
10. 难度:中等 | |
从正面观察下图的两个物体,看到的是( ) A. B. C. D. |
11. 难度:中等 | |
长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数据的中位数和众数分别是( ) A.36,37 B.37,36 C.36.5,37 D.37,36.5 |
12. 难度:中等 | |
已知两圆的半径分别为7和1,当它们外切时,圆心距为( ) A.6 B.7 C.8 D.9 |
13. 难度:中等 | |
某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h随时间t变化的图象是( ) A. B. C. D. |
14. 难度:中等 | |
不等式组:的解集是( ) A.x>-2 B.-2<x≤5 C.x≤5 D.无解 |
15. 难度:中等 | |
如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( ) A.△ABC≌△DEF B.∠DEF=90° C.AC=DF D.EC=CF |
16. 难度:中等 | |
如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为( ) A.19 B.20 C.21 D.22 |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
先化简再求值:,其中a满足a2-a=0. |
19. 难度:中等 | |
如图,△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的直角坐标系,并写出A,B,C各点的坐标. |
20. 难度:中等 | |
如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′,求出A′A″的长? |
21. 难度:中等 | |
某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图. |
22. 难度:中等 | |
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P(偶数); (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少? |
23. 难度:中等 | |
在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成. (1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数. |
24. 难度:中等 | |
如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO. (1)求证:; (2)计算CD•CB的值,并指出CB的取值范围. |
25. 难度:中等 | |||||||||||||||||
我区A,B两村盛产荔枝,A村有荔枝200吨,B村有荔枝300吨.现将这些荔枝运到C,D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.设从A村运往C仓库的荔枝重量为x吨,A,B两村运往两仓库的荔枝运输费用分别为yA元和yB元. (1)请填写下表,并求出yA,yB与x之间的函数关系式;
(3)考虑到B村的经济承受能力,B村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值. |
26. 难度:中等 | |
如图1,已知直线y=-x与抛物线y=-x2+6交于A,B两点. (1)求A,B两点的坐标; (2)求线段AB的垂直平分线的解析式; (3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由. |