1. 难度:中等 | |
的倒数是( ) A.4 B. C. D.-4 |
2. 难度:中等 | |
如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( ) A. B. C. D. |
3. 难度:中等 | |
用科学记数法表示0.0000210,结果是( ) A.2.10×10-4 B.2.10×10-5 C.2.1×10-4 D.2.1×10-5 |
4. 难度:中等 | |
对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( ) A.是一条直线 B.过点(,-k) C.经过一、三象限或二、四象限 D.y随着x增大而减小 |
5. 难度:中等 | |
如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5cm,则坡面AB的长是( ) A.10m B.m C.15m D.m |
6. 难度:中等 | |||||||||||||
为了解某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表:
A.众数是5元 B.平均数是2.5元 C.极差是4元 D.中位数是3元 |
7. 难度:中等 | |
已知两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是( ) A.16厘米 B.10厘米 C.6厘米 D.4厘米 |
8. 难度:中等 | |
如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2-k1的值是( ) A.1 B.2 C.4 D.8 |
9. 难度:中等 | |
如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是( ) A.S△AFD=2S△EFB B.BF=DF C.四边形AECD是等腰梯形 D.∠AEB=∠ADC |
10. 难度:中等 | |
若二次函数y=(x-m)2-1,当x≤1时,y随x的增大而减小,则m的取值范围是( ) A.m=1 B.m>1 C.m≥1 D.m≤1 |
11. 难度:中等 | |
不等式2x+1>0的解集是 . |
12. 难度:中等 | |
如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2= . |
13. 难度:中等 | |
把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式: . |
14. 难度:中等 | |
某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是 元. |
15. 难度:中等 | |
已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-4≤y≤8,则kb的值为 . |
16. 难度:中等 | |
已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为 . |
17. 难度:中等 | |
已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为 . |
18. 难度:中等 | |
如图,现有一个圆心角为90°,半径为16cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 cm. |
19. 难度:中等 | |
(1)计算: (2)解方程组. |
20. 难度:中等 | |
化简,求值:,其中m=. |
21. 难度:中等 | |
解分式方程:. |
22. 难度:中等 | |
已知:如图,AB=AC,AE=AD,点D、E分别在AB、AC上. 求证:∠B=∠C. |
23. 难度:中等 | |
某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少? |
24. 难度:中等 | |
如图△ABC中,∠ACB=90度,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于点E,CF∥AB交直线DE于F.设CD=x. (1)当x取何值时,四边形EACF是菱形?请说明理由; (2)当x取何值时,四边形EACD的面积等于2? |
25. 难度:中等 | |
初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(每个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解). |
26. 难度:中等 | |
如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF. |
27. 难度:中等 | |
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ. (1)点______(填M或N)能到达终点; (2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大; (3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由. |