1. 难度:中等 | |
实数3的倒数是( ) A.- B. C.-3 D.3 |
2. 难度:中等 | |
将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为( ) A.y=x2-1 B.y=x2+1 C.y=(x-1)2 D.y=(x+1)2 |
3. 难度:中等 | |
一个几何体的三视图如图所示,则这个几何体是( ) A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱 |
4. 难度:中等 | |
下面的计算正确的是( ) A.6a-5a=1 B.a+2a2=3a3 C.-(a-b)=-a+b D.2(a+b)=2a+b |
5. 难度:中等 | |
如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是( ) A.26 B.25 C.21 D.20 |
6. 难度:中等 | |
已知|a-1|+=0,则a+b=( ) A.-8 B.-6 C.6 D.8 |
7. 难度:中等 | |
在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( ) A. B. C. D. |
8. 难度:中等 | |
已知a>b,若c是任意实数,则下列不等式中总是成立的是( ) A.a+c<b+c B.a-c>b-c C.ac<bc D.ac>bc |
9. 难度:中等 | |
在平面中,下列命题为真命题的是( ) A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形 C.四个角相等的四边形是矩形 D.对角线互相垂直的四边形是平行四边形 |
10. 难度:中等 | |
如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(-1,2)、B(1,-2)两点,若y1<y2,则x的取值范围是( ) A.x<-1或x>1 B.x<-1或0<x<1 C.-1<x<0或0<x<1 D.-1<x<0或x>1 |
11. 难度:中等 | |
已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD= 度. |
12. 难度:中等 | |
不等式x-1≤10的解集是 . |
13. 难度:中等 | |
分解因式:a3-8a= . |
14. 难度:中等 | |
如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为 . |
15. 难度:中等 | |
已知关于x的一元二次方程x2-2x-k=0有两个相等的实数根,则k值为 . |
16. 难度:中等 | |
如图,在标有刻度的直线l上,从点A开始, 以AB=1为直径画半圆,记为第1个半圆; 以BC=2为直径画半圆,记为第2个半圆; 以CD=4为直径画半圆,记为第3个半圆; 以DE=8为直径画半圆,记为第4个半圆, …按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 倍,第n个半圆的面积为 (结果保留π) |
17. 难度:中等 | |
解方程组. |
18. 难度:中等 | |
如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD. |
19. 难度:中等 | |
广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006-2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答: (1)这五年的全年空气质量优良天数的中位数是______,极差是______. (2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是______年(填写年份). (3)求这五年的全年空气质量优良天数的平均数. |
20. 难度:中等 | |
已知(a≠b),求的值. |
21. 难度:中等 | |
甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标. (1)用适当的方法写出点A(x,y)的所有情况. (2)求点A落在第三象限的概率. |
22. 难度:中等 | |
如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方. (1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系. (2)若点N在(1)中的⊙P′上,求PN的长. |
23. 难度:中等 | |
某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元. (1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式. (2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨? |
24. 难度:中等 | |
如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C. (1)求点A、B的坐标; (2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标; (3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式. |
25. 难度:中等 | |
如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°). (1)当α=60°时,求CE的长; (2)当60°<α<90°时, ①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由. ②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值. |