1. 难度:中等 | |
的算术平方根为( ) A.2 B.-2 C.±2 D.16 |
2. 难度:中等 | |
下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ) A.1个 B.2个 C.3个 D.4个 |
3. 难度:中等 | |
在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为( ) A.10 B.15 C.5 D.3 |
4. 难度:中等 | |
小颖从家出发,直走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,下图中表示小颖离家时间与距离之间的关系的是( ) A. B. C. D. |
5. 难度:中等 | |
如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM的取值范围是( ) A.3≤OM≤5 B.3≤OM<5 C.4≤OM≤5 D.4≤OM<5 |
6. 难度:中等 | |
如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是( ) A.该班喜欢乒乓球的学生最多 B.该班喜欢排球与篮球的学生一样多 C.该班喜欢足球的人数是喜欢排球人数的1.25倍 D.该班喜欢其它球类活动的人数为5人 |
7. 难度:中等 | |
已知函数y=-x+5,,它们的共同点是:①函数y随x的增大而增大;②都有部分图象在第一象限;③都经过点(1,4),其中正确的有( ) A.3个 B.2个 C.1个 D.0个 |
8. 难度:中等 | |
如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是( ) A. B. C. D. |
9. 难度:中等 | |
已知2-是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是 . |
10. 难度:中等 | |
在日历中圈出一竖列上相邻的3个数,使它们的和为42,则所圈数中最小的是 . |
11. 难度:中等 | |
在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形…按这样的规律进行下去,第3个正方形的面积为 ;第n个正方形的面积为 (用含n的代数式表示). |
12. 难度:中等 | |
如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k= . |
13. 难度:中等 | |
如图,已知直线y=kx-3经过点M,则与此直线、x轴、y轴都相切的圆的圆心坐标为 . |
14. 难度:中等 | |
如图,AB是⊙O的切线,∠O=60°,OB=10,则⊙O的半径长为 . |
15. 难度:中等 | |
如图是一次函数y1=ax+b,y2=kx+c的图象,观察图象,写出同时满足y1≥0,y2≥0时x的取值范围 . |
16. 难度:中等 | |
二次函数y=ax2+bx+c(a≠0)的图象开口向上,并经过点(-1,2),(1,0).则下列结论:①.当x>0时,函数值y随x的增大而增大,②.当x>0时,函数值y随x的增大而减小,③.存在一个负数x,使得当x<x时,函数值y随x的增大而减小;当x>x时,函数值y随x的增大而增大,④.存在一个正数x,使得当x<x时,函数值y随x的增大而减小;当x>x时,函数值y随x的增大而增大,其中正确的是 . |
17. 难度:中等 | |
计算:+tan60°. |
18. 难度:中等 | |
某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元. (1)请问工厂有哪几种生产方案? (2)选择哪种方案可获利最大,最大利润是多少? |
19. 难度:中等 | |
如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h. 在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h. 在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外. (1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是: h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h; (2)证明图(2)所得结论; (3)证明图(4)所得结论; (4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=.图(4)与图(6)中的等式有何关系. |
20. 难度:中等 | |
如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标). (1)求点P落在正方形面上(含边界,下同)的概率; (2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正方形面上的概率为?若存在,指出其中的一种平移方式;若不存在,说明理由. |
21. 难度:中等 | |
如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C. (1)求证:CD是⊙O的切线; (2)若CB=2,CE=4,求AE的长. |
22. 难度:中等 | |||||||||||||||||||
依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表: (1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x表示公民每月收入(单位:元),y表示应交税款(单位:元),当2500≤x≤4000时,请写出y关于x的函数关系式; (3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?
|
23. 难度:中等 | |
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由. (2)结论应用: ①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF; ②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行. |
24. 难度:中等 | |
如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0). (1)试说明△ABC是等腰三角形; (2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S. ①求S与t的函数关系式; ②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由; ③在运动过程中,当△MON为直角三角形时,求t的值. |