1. 难度:中等 | |
的算术平方根是 . |
2. 难度:中等 | |
分解因式:x2y2-1= . |
3. 难度:中等 | |
函数y=中自变量x的取值范围是 . |
4. 难度:中等 | |
如图,在⊙O中,AB是直径,弦CD∥AB,弧AC的度数为20°,则圆周角∠CPD的度数为 . |
5. 难度:中等 | |
如图,已知等腰梯形ABCD的周长是50cm,下底长为20cm,下底角为60°,则这个梯形的各边长为 . |
6. 难度:中等 | |
某商场对所销售的茶叶进行促销活动:每购买50克的袋装茶叶则送小包装5克的茶叶2袋,某顾客获得小包装茶叶有2m袋,则他共得到的茶叶(包括所购买的茶叶与所赠送的茶叶的总和)为 克. |
7. 难度:中等 | |
一个几何体是由一些大小相同的小正方块摆成的,其俯视图、主视图如图所示,则组成这个几何体的小正方块最多有 个. |
8. 难度:中等 | |
已知,分式的值为 . |
9. 难度:中等 | |
如图,折叠矩形的纸片ABCD,先折痕(对角线)DB,再过点D折叠,使AD落在折痕BD上,得另一折痕DG,若AB=2,BC=1,则AG= . |
10. 难度:中等 | |
如图,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径为 . |
11. 难度:中等 | |
下列运算中正确的是( ) A.a3•a2=a6 B.(a3)4=a7 C. D.a5+a5=2a5 |
12. 难度:中等 | |
化简的结果为( ) A.x+y B.x-y C. D.y- |
13. 难度:中等 | |
在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是( ) A. B.2 C. D. |
14. 难度:中等 | |
已知一次函数y=x+m和y=-x+n的图象都经过点A(-2,0),且与y轴分别交于B,C两点,那么△ABC的面积是( ) A.2 B.3 C.4 D.6 |
15. 难度:中等 | |
如图,△ABC中,D、E分别为AC、BC边上的点,AB∥DE,CF为AB边上的中线,若AD=5,CD=3,DE=4,则BF的长为( ) A. B. C. D. |
16. 难度:中等 | |
已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( ) A. B. C. D. |
17. 难度:中等 | |
解不等式组. |
18. 难度:中等 | |
如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE. |
19. 难度:中等 | |||||||||
某市为了提高学生的安全防范意识和能力,每年在全市中小学学生中举行安全知识竞赛,为了了解今年全市七年级同学的竞赛成绩情况,小强随机调查了一些七年级同学的竞赛成绩,根据收集到的数据绘制了参与调查学生成绩的频数分布直方图和其中合格学生成绩的扇形统计图如下: 根据统计图提供的信息,解答以下问题: (1)小强本次共调查了多少名七年级同学的成绩?被调查的学生中成绩合格的频率是多少? (2)该市若有10000名七年级学生,请你根据小强的调查统计结果估计全市七年级学生中有多少名学生竞赛成绩合格?对此你有何看法? (3)填写下表:
|
20. 难度:中等 | |
已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A. (1)求证:CD为⊙O的切线; (2)过点C作CE⊥AB于E,若,求⊙O的半径. |
21. 难度:中等 | |
今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台,若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台? |
22. 难度:中等 | |
如图所示,有三种不透明的卡片,除正面写有不同数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次随机抽一张,并把这张卡片标有的数字记作一次函数表达式中的k,放回洗匀后,第二次再随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的b. (1)写出k为负数的概率. (2)求一次函数y=kx+b的图象经过第二,三,四象限的概率(用树状图或列表法求解.) |
23. 难度:中等 | |
为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A北偏西45°并距该岛20海里的B处待命.位于该岛正西方向C处的某外国商船遭到海盗袭击,船长发现在其北偏东60°的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C处?(结果精确到个位.参考数据:≈1.4,≈1.7) |
24. 难度:中等 | ||||||||||
某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式; (3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=-x2+13.2x-1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨? |
25. 难度:中等 | |
如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD. (1)求C点的坐标及抛物线的解析式; (2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由; (3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由. |