1. 难度:中等 | |
下列各数中,负数是( ) A.-(1-2) B.(-1)-1 C.(-1)n D.1-2 |
2. 难度:中等 | |
下列各等式成立的是( ) A.a2+a5=a5 B.(-a2)3=a6 C.a2-1=(a+1)(a-1) D.(a+b)2=a2+b2 |
3. 难度:中等 | |
2010年江西省发生了特大洪灾,洪灾无情人有情,在此期间,社会各界高度关注灾情,纷纷慷慨相助,奉献爱心.从6月18日至6月29日16时,江西省民政厅救灾捐赠接收办公室共接收捐款3002.317万元,其中3002.317万元这个数字(保留四位有效数字)用科学记数表示为( ) A.3.002×103元 B.30.02×103元 C.3.00231×103元 D.3.002×107元 |
4. 难度:中等 | |
如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( ) A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形 |
5. 难度:中等 | |
某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( ) A.1~2月份利润的增长快于2~3月份利润的增长 B.1~4月份利润的极差于1~5月份利润的极差不同 C.1~5月份利润的众数是130万元 D.1~5月份利润的中位数为120万元 |
6. 难度:中等 | |
如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为( ) A.1.1,8 B.0.9,3 C.1.1,12 D.0.9,8 |
7. 难度:中等 | |
关于x的方程(a-5)x2-4x-1=0有实数根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 |
8. 难度:中等 | |
如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为( ) A.2 B.3 C.4 D.6 |
9. 难度:中等 | |
通过估算写出大于但小于的整数: . |
10. 难度:中等 | |
函数y=中,自变量x的取值范围是 . |
11. 难度:中等 | |
在如图的正方形网格中作一个有两边长为有理数的锐角等腰三角形,并要求三角形的各个顶点均在格点上. |
12. 难度:中等 | |
已知关于x的分式方程的解为负数,那么字母a的取值范围是 . |
13. 难度:中等 | |
由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是 . |
14. 难度:中等 | |
因式分【解析】 9x2-y2-4y-4= . |
15. 难度:中等 | |
如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则的值为 . |
16. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②ac<0;③4a+2b+c<0;④-2<<0.其中正确结论的序号是 . |
17. 难度:中等 | |
先化简,再求值:,其中x=-2. |
18. 难度:中等 | |
解不等式组:并在数轴上把解集表示出来. |
19. 难度:中等 | |
小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法. |
20. 难度:中等 | |
在国家的宏观调控下,某县城的商品房成交价由今年1月份的5000元/m2下降到3月份的4500元/m2. (1)问2、3两月平均每月降价的百分率(保留1位有效数字)是多少?(可用计算器). (2)如果房价继续回落,按此降价的百分率,你预测到5月份该市的商品房成交均价是否会跌破4000元/m2?请说明理由. |
21. 难度:中等 | |
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积. (1)请你用画树状图或列表的方法,求这两个数的积为0的概率; (2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平. |
22. 难度:中等 | |||||||||||||||||||||
某文具店九、十月出售了 五种计算器,其售价和销售台数如下表:
(2)在所考察的数据中,其中位数和众数分别是多少; (3)经核算各种计算器的利润率均为20%,请你根据上述有关信息,选定下月应多进哪种计算器?并说明进价是多少? |
23. 难度:中等 | |
如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的. (1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标; (2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标; (3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为a、b,斜边为c). |
24. 难度:中等 | |
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)分别求出图中直线和抛物线的函数表达式; (2)连接PO、PC,并把△POC沿C O翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. |
25. 难度:中等 | |
如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N. (1)求证:△ODM∽△MCN; (2)设DM=x,求OA的长(用含x的代数式表示); (3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论? |