1. 难度:中等 | |
-的倒数是( ) A.- B. C.-2 D.2 |
2. 难度:中等 | |
下列汽车标志中既是轴对称又是中心对称图形的是( ) A. B. C. D. |
3. 难度:中等 | |
某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是( ) A.精确到百分位,有3个有效数字 B.精确到个位,有6个有效数字 C.精确到千位,有6个有效数字 D.精确到千位,有3个有效数字 |
4. 难度:中等 | |
如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为( ) A.cm B.4cm C.cm D.cm |
5. 难度:中等 | |
如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是( ) A. B. C. D. |
6. 难度:中等 | |
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(-2,-2),则k的值为( ) A.1 B.-3 C.4 D.1或-3 |
7. 难度:中等 | |
分解因式:a3-a= . |
8. 难度:中等 | |
要使式子有意义,则a的取值范围为 . |
9. 难度:中等 | |
某水库大坝的横截面是梯形,坝内斜坡的坡度i=1:,坝外斜坡的坡度i=1:1,则两个坡角的和为 . |
10. 难度:中等 | |
已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50米,半圆的直径为4米,则圆心O所经过的路线长是 米. |
11. 难度:中等 | |
如图,以0为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于 . |
12. 难度:中等 | |
如图,巳知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=,则线段BC的长度等于 . |
13. 难度:中等 | |
如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是 . |
14. 难度:中等 | |
当m= 时,函数y=(m+5)x2m-1+7x-3(x≠0)是一个一次函数. |
15. 难度:中等 | |
解方程组:. |
16. 难度:中等 | |
已知a2+2ab+b2=0,求代数式a(a+4b)-(a+2b)(a-2b)的值. |
17. 难度:中等 | |
5个棱长为1的正方体组成如图的几何体. (1)该几何体的体积是______(立方单位),表面积是______(平方单位) (2)画出该几何体的主视图和左视图. |
18. 难度:中等 | |
某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下. (1)求训练后第一组平均成绩比训练前增长的百分数; (2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由; (3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点. |
19. 难度:中等 | |
有3张扑克牌,分別是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张. (1)先后两次抽得的数字分别记为s和t,求|s-t|≥l的概率. (2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高? |
20. 难度:中等 | |
如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732). |
21. 难度:中等 | |
如图,在圆内接四边形ABCD中,CD为∠BCA的外角的平分线,F为上一点,BC=AF,延长DF与BA的延长线交于E. (1)求证:△ABD为等腰三角形. (2)求证:AC•AF=DF•FE. |
22. 难度:中等 | |
现有一批设备需由景德镇运往相距300千米的南昌,甲、乙两车分别以80千米/时和60千米/时的速度同时出发,甲车在距南昌130千米的A处发现有部分设备丢在B处,立即以原速返回到B处取回设备,为了还能比乙车提前到达南昌,开始加速以100千米/时的速度向南昌前进,设AB的距离为a千米. (1)写出甲车将设备从景德镇运到南昌所经过的路程(用含a的代数式表示); (2)若甲车还能比乙车提前到达南昌,求a的取值范围.(不考虑其它因素) |
23. 难度:中等 | |
如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D. (1)求抛物线的解析式. (2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同 时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2) ①试求出S与运动时间t之间的函数关系式,并写出t的取值范围; ②当S取时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由. (3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标. |
24. 难度:中等 | |
在Rt△ABC中,∠C=90°,AB=10,AC=8,点Q在AB上,且AQ=2,过Q做QR⊥AB,垂足为Q,QR交折线AC-CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB-BC-CA移动,设移动时间为t秒(如图2). (1)求△BCQ的面积S与t的函数关系式. (2)t为何值时,QP∥AC? (3)t为何值时,直线QR经过点P? (4)当点P在AB上运动时,以PQ为边在AB上方所作的正方形PQMN在Rt△ABC内部,求此时t的取值范围. |