1. 难度:中等 | |
-的倒数是( ) A.- B.-3 C. D.3 |
2. 难度:中等 | |
如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( ) A. B. C. D. |
3. 难度:中等 | |
2011年4月28日,国家统计局公布了第六次全国人口普查结果,总人口为1 339 000 000人,将1 339 000 000用科学记数法表示为( ) A.1.339×108 B.13.39×108 C.1.339×109 D.1.339×1010 |
4. 难度:中等 | |
下列计算正确的是( ) A.(a-b)2=a2-b2 B.3x2•4x3=12x6 C.a6÷a2=a3 D.(-x3)2=x6 |
5. 难度:中等 | |||||||||||||
为了解某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表:
A.众数是5元 B.平均数是2.5元 C.极差是4元 D.中位数是3元 |
6. 难度:中等 | |
一种原价均为m元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ) A.甲或乙或丙 B.乙 C.丙 D.乙或丙 |
7. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D,沿DE所在直线折叠,使点B恰好与点A重合,若CD=2,则AB的值为( ) A.2 B.4 C.4 D.8 |
8. 难度:中等 | |
如右图,两个标有数字的轮子可以分别绕轮子中心旋转,旋转停止时,每个轮子上的箭头各指着轮子上的一个数字,这两个数字和为偶数的概率是( ) A. B. C. D. |
9. 难度:中等 | |
若不等式组无解,则不等式组的解集是( ) A.2-b<x<2-a B.b-2<x<a-2 C.2-a<x<2-b D.无解 |
10. 难度:中等 | |
在同一坐标系中,作出函数y=kx2和y=kx-2(k≠0)的图象,只可能是( ) A. B. C. D. |
11. 难度:中等 | |
如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为( ) A.12 B.9 C.6 D.4 |
12. 难度:中等 | |
如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( ) A. cm B.9 cm C.cm D.cm |
13. 难度:中等 | |
如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是 . |
14. 难度:中等 | |
如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为 米.(保留根号) |
15. 难度:中等 | |
如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由 个基础图形组成. |
16. 难度:中等 | |
如图,四边形ABCD是⊙O的内接正方形,P是弧AB的中点,PD与AB交于E点,则= . |
17. 难度:中等 | |
求值:计算:(2cos30°-1)+ |
18. 难度:中等 | |
先化简,再从0,1,-1,2中任选一个合适的数求值. |
19. 难度:中等 | ||||||||||||||||||||||
某市七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计: 频率分布表
(1)直接写出频率分布表的A,B的值,并补全频数分布直方图; (2)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”,这次15000名学生中约有多少人评为“D”? (3)以(2)的等级为标准,如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由. |
20. 难度:中等 | |
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD. 求证:(1)AE=BE; (2)CD=AD+BC. |
21. 难度:中等 | |||||||||
今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于48元,小于51元. 请根据以上信息,帮助吴老师解决下列问题: (1)求出(2)班与(3)班的捐款金额各是多少元; (2)求出(1)班的学生人数. |
22. 难度:中等 | |
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q. (1)求经过B、E、C三点的抛物线的解析式; (2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由; (3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由. |
23. 难度:中等 | |
如图,已知:在直角坐标系中.点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动.B(4,2),以BE为直径作⊙O1. (1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论; (2)在(1)的条件下,连接FB,几秒时FB与⊙O1相切? (3)若点E提前2秒出发,点F再出发.当点F出发后,点E在A点的左侧时,设BA⊥x轴于点A,连接AF交⊙O1于点P,试问AP•AF的值是否会发生变化?若不变,请说明理由并求其值;若变化,请求其值的变化范围. |