1. 难度:中等 | |
4-(-7)等于( ) A.3 B.11 C.-3 D.-11 |
2. 难度:中等 | |
计算x3÷(2x2)的结果是( ) A. B.2 C. D. |
3. 难度:中等 | |
如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=( ) A.70° B.80° C.90° D.100° |
4. 难度:中等 | |
如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是( ) A. B. C. D. |
5. 难度:中等 | |
如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是( ) A.A(5,30°) B.B(2,90°) C.D(4,240°) D.E(3,60°) |
6. 难度:中等 | |
如图是某公司2009年第一季度资金投放总额与1-4月份利润统计示意图,若知1-4月份利润的总和为156万元,根据图中的信息判断,得出下列结论: ①公司2009年第一季度中2月份的利润最高; ②公司2009年第一季度中3月份的利润最高; ③公司2009年4月份的资金投放总额比1月份略高; ④公司2010年4月份的利润率与上一年同期持平,资金投放总额不低于上年第一季度的最高值,则公司2010年4月份的利润至少为50万元.其中正确的结论是( ) A.①③ B.②③④ C.③④ D.④ |
7. 难度:中等 | |
如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ) A.3 B. C. D.4 |
8. 难度:中等 | |
如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( ) A.cm B.6cm C.8cm D.10cm |
9. 难度:中等 | |
下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依此规律,拼搭第n个图案需小木棒( )根. A.6n-2 B.n2+2 C.-2n2+12n-6 D.n2+3n |
10. 难度:中等 | |
如图,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连接AE,CE.延长CE到F,连接BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F到BC的距离为; ③BE+EC=EF;④;⑤. 其中正确的个数是( ) A.2个 B.3个 C.4个 D.5个 |
11. 难度:中等 | |
分解因式:x4y-16y= . |
12. 难度:中等 | |
如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2-2mx+n2=0有实数根的概率为 . |
13. 难度:中等 | |
甲乙丙三家超市为了促销一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是 . |
14. 难度:中等 | |
如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别为m、2m,线段AB的延长线交x轴于点C,若△AOC的面积为4,则k的值为 . |
15. 难度:中等 | |
已知▱ABCD的周长为28,自顶点A作AE⊥DC于点E,AF⊥BC于点F.若AE=3,AF=4,则CE-CF= . |
16. 难度:中等 | |
计算:. |
17. 难度:中等 | |
已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2. (1)求实数m的取值范围; (2)当x12-x22=0时,求m的值. |
18. 难度:中等 | |
如图,在一次数学课外实践活动中,要求测教学楼的高度AB、小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB. |
19. 难度:中等 | |||||||||||||||||||||||
某校七年级各班分别选出3名学生组成班级代表队,参加“低碳生活进校园,绿色环保我先行”知识竞赛,得分最多的班级为优胜班级,各代表队比赛结果如下:
(2)学校从获胜班级的代表队中各抽取1名学生组成“绿色环保监督”小组,小明、小红分别是七(4)班和七(6)班代表队的学生,用列表法或画树形图的方法说明同时抽到小明和小红的概率是多少? |
20. 难度:中等 | |
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求证:BC=AB; (3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值. |
21. 难度:中等 | |
如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线y=(k≥2)于E、F两点. (1)点E的坐标是______,点F的坐标是______;(均用含k的式子表示) (2)判断EF与AB的位置关系,并证明你的结论; (3)记S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若没有,请你说明理由. |
22. 难度:中等 | |
为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳能路灯? |
23. 难度:中等 | |
如图,已知正方形OABC在直角坐标系xOy中,点A、C分别在x轴、y轴的正半轴上,点O在坐标原点.等腰直角三角板OEF的直角顶点O在原点,E、F分别在OA、OC上,且OA=4,OE=2.将三角板OEF绕O点逆时针旋转至OE1F1的位置,连接CF1、AE1. (1)求证:△OAE1≌△OCF1; (2)若三角板OEF绕O点逆时针旋转一周,是否存在某一位置,使得OE∥CF?若存在,请求出此时E点坐标;若不存在,请说明理由. |
24. 难度:中等 | |
如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E. (1)求点E的坐标; (2)求抛物线的函数解析式; (3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标; (4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标. |