1. 难度:中等 | |
-2的相反数是( ) A. B.- C.-2 D.2 |
2. 难度:中等 | |
根据国家统计局的公布数据,2010年我国GDP的总量约为398 000亿元人民币.将398 000用科学记数法表示应为( ) A.398×103 B.0.398×106 C.3.98×105 D.3.98×106 |
3. 难度:中等 | |
如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于( ) A.30° B.40° C.60° D.70° |
4. 难度:中等 | |
如图,在△ABC中,D、E分别是BC、AC边的中点.若DE=2,则AB的长度是( ) A.6 B.5 C.4 D.3 |
5. 难度:中等 | ||||||||||||||||
甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
A.甲 B.乙 C.丙 D.丁 |
6. 难度:中等 | |
已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于( ) A.8π B.9π C.10π D.11π |
7. 难度:中等 | |
若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的数其十位数字与个位数字的和为9的概率是( ) A. B. C. D. |
8. 难度:中等 | |
如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AB、AD的中点.动点R从点B出发,沿B→C→D→F方向运动至点F处停止.设点R运动的路程为x,△EFR的面积为y,当y取到最大值时,点R应运动到( ) A.BC的中点处 B.C点处 C.CD的中点处 D.D点处 |
9. 难度:中等 | |
若分式有意义,则x的取值范围是 . |
10. 难度:中等 | |
分解因式:a2b-2ab+b= . |
11. 难度:中等 | |
已知A、B是抛物线y=x2-4x+3上位置不同的两点,且关于抛物线的对称轴对称,则点A、B的坐标可能是 (写出一对即可). |
12. 难度:中等 | |
如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为 ,点An . |
13. 难度:中等 | |
计算:-4sin45°+(3-π)+|-4| |
14. 难度:中等 | |
求不等式组 的整数解. |
15. 难度:中等 | |
先化简,再求值:,其中. |
16. 难度:中等 | |
如图,在四边形ABCD中,AC是∠DAE的平分线,DA∥CE,∠AEB=∠CEB.求证:AB=CB. |
17. 难度:中等 | |
列方程或方程组解应用题 随着人们节能意识的增强,节能产品进入千家万户,今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米. |
18. 难度:中等 | |
如图,在平行四边形ABCD中,过点A分别作AE⊥BC于点E,AF⊥CD于点F. (1)求证:∠BAE=∠DAF; (2)若AE=4,AF=,,求CF的长. |
19. 难度:中等 | ||||||||||||||||
某中学的地理兴趣小组在本校学生中开展主题为“地震知识知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
(2)根据表中的数据,请你计算“非常了解”的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图. (3)若该校有1500名学生,请根据调查结果估计这些学生中“比较了解”的人数约为多少? |
20. 难度:中等 | |
已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C. (1)求证:AD=DC; (2)过D作⊙O的切线交BC于E,若DE=2,CE=1,求⊙O的半径. |
21. 难度:中等 | |
在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=的图象交于A(1,6),B(a,3)两点. (1)求k1,k2的值; (2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值. |
22. 难度:中等 | |
如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值. (1)请你帮小萍求出x的值. (2)参考小萍的思路,探究并解答新问题: 如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应) |
23. 难度:中等 | |
已知关于x的方程(m-1)x2-(2m-1)x+2=0有两个正整数根. (1)确定整数m值; (2)在(1)的条件下,利用图象写出方程(m-1)x2-(2m-1)x+2+=0的实数根的个数. |
24. 难度:中等 | |
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F. (1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状; (2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围; (3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长. |
25. 难度:中等 | |
如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(-2,0),B,与y轴交于点C,tan∠ABC=2. (1)求抛物线的解析式及其顶点D的坐标; (2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由; (3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度? |