1. 难度:中等 | |
若,且a+2b-c=12,则b= . |
2. 难度:中等 | |
已知△ABC与△DEF相似且周长的比为3:4,则△ABC与△DEF面积的比为 . |
3. 难度:中等 | |
△ABC中,若AC=,BC=,AB=3,则cosA= . |
4. 难度:中等 | |
如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB= . |
5. 难度:中等 | |
如图,在△ABC中,D是AB边上一点,连接CD,要使△ADC与△ABC相似,应添加的条件是 . |
6. 难度:中等 | |
如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是 米. |
7. 难度:中等 | |
如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为 m. |
8. 难度:中等 | |
如图,光源P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,已知AB=2m,CD=6m,点P到CD的距离是2.7m,那么AB与CD间的距离是 . |
9. 难度:中等 | |
如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是 . |
10. 难度:中等 | |
如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是 . |
11. 难度:中等 | |
下列命题中,是真命题的为( ) A.锐角三角形都相似 B.直角三角形都相似 C.等腰三角形都相似 D.等边三角形都相似 |
12. 难度:中等 | |
在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.不变 |
13. 难度:中等 | |
如图,∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=40°,则下列哪一组三角形相似?( ) A.△BDG,△CEF B.△ABC,△CEF C.△ABC,△BDG D.△FGH,△ABC |
14. 难度:中等 | |
如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有( ) A.3个 B.2个 C.1个 D.0个 |
15. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为( ) A.1:2 B.1:3 C.1:4 D.1:5 |
16. 难度:中等 | |
如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为( ) A.(-a,-2b) B.(-2a,-b) C.(-2a,-2b) D.(-2b,-2a) |
17. 难度:中等 | |
如图,在凯里市某广场上空飘着一只汽球P,A、B是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求汽球P的高度.(精确到0.1米,=1.732) |
18. 难度:中等 | |
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上. (1)判断△ABC和△DEF是否相似,并说明理由; (2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由) |
19. 难度:中等 | |
如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE. (1)写出图中两对相似三角形(不得添加字母和线); (2)请分别说明两对三角形相似的理由. |
20. 难度:中等 | |
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4. (1)求证:△ABE∽△ABD; (2)求tan∠ADB的值; (3)延长BC至F,连接FD,使△BDF的面积等于,求∠EDF的度数. |
21. 难度:中等 | |
如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上. (1)求证:△ABD∽△CAE; (2)如果AC=BD,AD=2BD,设BD=a,求BC的长. |
22. 难度:中等 | |
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证: (1)D是BC的中点; (2)△BEC∽△ADC; (3)BC2=2AB•CE. |
23. 难度:中等 | |
正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直. (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积; (3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值. |
24. 难度:中等 | |
如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点. (1)求证:AC•CD=PC•BC; (2)当点P运动到AB弧中点时,求CD的长; (3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S. |