1. 难度:中等 | |
函数的图象经过点A(2,-3),则k的值为( ) A. B. C.6 D.-6 |
2. 难度:中等 | |
下列命题正确的是( ) A.三点可以确定一个圆 B.以定点为圆心,定长为半径可确定一个圆 C.顶点在圆上的三角形叫圆的外接三角形 D.等腰三角形的外心一定在这个三角形内 |
3. 难度:中等 | |
已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2008的值为( ) A.2006 B.2007 C.2008 D.2009 |
4. 难度:中等 | |
将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2 |
5. 难度:中等 | |
如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为( ) A.1 B. C. D. |
6. 难度:中等 | |
对于反比例函数y=,下列说法不正确的是( ) A.点(-2,-1)在它的图象上 B.它的图象在第一、三象限 C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小 |
7. 难度:中等 | |
如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为( ) A.10πcm B.20πcm C.30πcm D.40πcm |
8. 难度:中等 | |
如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O-C-D-O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是( ) A. B. C. D. |
9. 难度:中等 | |
如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为( ) A.a B.a C.(-1)a D.(2-)a |
10. 难度:中等 | |
如图所示是二次函数y=-x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是( ) A.4 B. C.2π D.8 |
11. 难度:中等 | |
矩形面积为6cm2,长为xcm,那么这个矩形的宽y(cm)与长x(cm)的函数关系为 . |
12. 难度:中等 | |
将二次函数y=2x2-4x+7配方成y=a(x+m)2+k的形式为 . |
13. 难度:中等 | |
已知=,则的值为 . |
14. 难度:中等 | |||||||||||||||
九年级数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格根据表格上的信息回答问题:该二次函数y=ax2+bx+c,当x=-3时,y=
|
15. 难度:中等 | |
如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数是 度. |
16. 难度:中等 | |
如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是 . |
17. 难度:中等 | |
已知关于x的二次函数的图象的顶点坐标为(-1,2),且图象过点(1,-3), (1)求这个二次函数的关系式; (2)写出它的开口方向、对称轴. |
18. 难度:中等 | |
如图,一个圆锥的高为cm,侧面展开图是半圆.求: (1)圆锥的母线长与底面半径之比; (2)求∠BAC的度数; (3)圆锥的侧面积(结果保留π). |
19. 难度:中等 | |
如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点. (1)求此反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围. |
20. 难度:中等 | |
如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC=∠CAD,求弦AC的长. |
21. 难度:中等 | |
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面; (2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. |
22. 难度:中等 | |
如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3). (1)求反比例函数的解析式及E点的坐标; (2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由. |
23. 难度:中等 | |
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? |
24. 难度:中等 | |
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动. (1)求线段OA所在直线的函数解析式; (2)设抛物线顶点M的横坐标为m, ①用m的代数式表示点P的坐标; ②当m为何值时,线段PB最短; (3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由. |