1. 难度:中等 | |
-6的相反数是( ) A.-6 B.- C. D.6 |
2. 难度:中等 | |
下列交通标志是轴对称图形的是( ) A. B. C. D. |
3. 难度:中等 | |
据第六次全国人口普查数据公报,淮安市常住人口约为480万人.480万(4800000)用科学记数法可表示为( ) A.4.8×104 B.4.8×105 C.4.8×106 D.4.8×107 |
4. 难度:中等 | |
如图是由几个相同的小正方体搭成的一个几何体,它的左视图是( ) A. B. C. D. |
5. 难度:中等 | |
在菱形ABCD中,AB=5cm,则此菱形的周长为( ) A.5cm B.15cm C.20cm D.25cm |
6. 难度:中等 | |
某地区连续5天的最高气温(单位:℃)分别是:30,33,24,29,24.这组数据的中位数是( ) A.29 B.28 C.24 D.9 |
7. 难度:中等 | |
如图,反比例函数的图象经过点A(-1,-2).则当x>1时,函数值y的取值范围是( ) A.y>1 B.0<y<l C.y>2 D.0<y<2 |
8. 难度:中等 | |
如果不等式组的解集是x<2,那么m的取值范围是( ) A.m=2 B.m>2 C.m<2 D.m≥2 |
9. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为( ) A.15° B.20° C.25° D.30° |
10. 难度:中等 | |
如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足( ) A. B.R=3r C.R=2r D. |
11. 难度:中等 | |
如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( ) A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1) |
12. 难度:中等 | |
如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD-DC-CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是( ) A. B. C. D. |
13. 难度:中等 | |
分解因式:x2-2x+1= . |
14. 难度:中等 | |
如图,已知AB∥CD,∠1=80°,则∠2= 度. |
15. 难度:中等 | |
如图,在梯形ABCD中,AB∥DC,∠ADC的平分线与∠BCD的平分线的交点E恰在AB上.若AD=7cm,BC=8cm,则AB的长度是 cm. |
16. 难度:中等 | |
一个边长为16m的正方形展厅,准备用边长分别为1m和0.5m的两种正方形地板砖铺设其地面.要求正中心一块是边长为1m的大地板砖,然后从内到外一圈小地板砖、一圈大地板砖相间镶嵌(如图所示),则铺好整个展厅地面共需要边长为1m的大地板砖 块. |
17. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=,则BE的长为 . |
18. 难度:中等 | |
如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为 . |
19. 难度:中等 | |
先化简,再求值:. |
20. 难度:中等 | |
如图,在一个10×10的正方形DEFG网格中有一个△ABC. ①在网格中画出△ABC向下平移3个单位得到的△A1B1C1; ②在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C; ③若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标. |
21. 难度:中等 | |
一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同. (1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. |
22. 难度:中等 | |
小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象. (1)求s2与t之间的函数关系式; (2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远? |
23. 难度:中等 | |
某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务,实际每天铺设多长管道? |
24. 难度:中等 | |
数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少? 经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值. (1)请按照小明的思路写出求解过程. (2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由. |
25. 难度:中等 | |
如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=,OP=2. (1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离; (2)求证:△OPN∽△PMN; (3)写出y与x之间的关系式; (4)试写出S随x变化的函数关系式,并确定S的取值范围. |
26. 难度:中等 | |
如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由. |