1. 难度:中等 | |
下面四个数中比-2小的数是( ) A.1 B.0 C.-1 D.-3 |
2. 难度:中等 | |
目前我县在校中学生约为21600名.21600用科学记数法表示为( ) A.0.216×105 B.2.16×104 C.21.6×103 D.216×102 |
3. 难度:中等 | |
下面四个几何体中,左视图是四边形的几何体共有( ) A.1个 B.2个 C.3个 D.4个 |
4. 难度:中等 | |
如图,将三角板的直角顶点放在两条平行线a、b中的直线b上,如果∠1=40°,则∠2的度数是( ) A.30° B.45° C.40° D.50° |
5. 难度:中等 | |
不等式组的解集在数轴上表示为( ) A. B. C. D. |
6. 难度:中等 | |
如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于( ) A.30° B.35° C.40° D.50° |
7. 难度:中等 | |
如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( ) A.AB=CD B.AD=BC C.AB=BC D.AC=BD |
8. 难度:中等 | |
用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9 |
9. 难度:中等 | |
关于反比例函数y=的图象,下列说法正确的是( ) A.必经过点(1,1) B.两个分支分布在第二、四象限 C.两个分支关于x轴成轴对称 D.两个分支关于原点成中心对称 |
10. 难度:中等 | |
多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A.极差是47 B.众数是42 C.中位数是58 D.每月阅读数量超过40的有4个月 |
11. 难度:中等 | |
分解因式:2x2-8= . |
12. 难度:中等 | |
化简:= . |
13. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= cm. |
14. 难度:中等 | |
如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A'BC'的位置,且点A'、C'仍落在格点上,则线段AB扫过的图形面积是 平方单位(结果保留π). |
15. 难度:中等 | |
生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只. |
16. 难度:中等 | |
长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为 . |
17. 难度:中等 | |
(1)计算:. (2)先化简,再求值:(4+m)(4-m)+m(m-8)-12,其中m=. |
18. 难度:中等 | |
两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么? |
19. 难度:中等 | |
我县今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在四个物理实验(用纸签A、B、C、D表示)和四个化学实验(用纸签E、F、G、H表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个. (1)用“列表法”或“树状图法”表示所有可能出现的结果; (2)小刚抽到物理实验B和化学实验G(记作事件M)的概率是多少? |
20. 难度:中等 | |
如图,某堤坝的横截面是梯形ABCD,背水坡AD的坡度i(即tanα)为1:1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1:1.4,已知堤坝总长度为4000米. (1)求完成该工程需要多少土方? (2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方? |
21. 难度:中等 | |
问题背景: 在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积. (1)请你将△ABC的面积直接填写在横线上______; 思维拓展: (2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积; 探索创新: (3)若△ABC三边的长分别为、、(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积. |
22. 难度:中等 | |
如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB. (1)求b+c的值; (2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式; (3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标. |
23. 难度:中等 | |
如图,直角坐标系中,以点A(1,0)为圆心画圆,点M(4,4)在⊙A上,直线y=-x+b过点M,分别交x轴、y轴于B、C两点. (1)求⊙A的半径和b的值; (2)判断直线BC与⊙A的位置关系,并说明理由; (3)若点P在⊙A上,点Q是y轴上C点下方的一点,当△PQM为等腰直角三角形时,请直接写出满足条件的点Q坐标. |