1. 难度:中等 | |
-5的相反数是( ) A.-5 B.5 C.- D. |
2. 难度:中等 | |
2010年春季,中国西南五省市(云南、广西、贵州、四川、重庆)遭遇世纪大旱,截止3月底,约有60 000 000同胞受灾,这个数据用科学记数法可表示为( ) A.6×105 B.6×106 C.6×107 D.6×108 |
3. 难度:中等 | |
下列运算正确的是( ) A.a2+a3=a5 B.(-2x)3=-2x3 C.(a-b)(-a+b)=-a2-2ab-b2 D.+=3 |
4. 难度:中等 | |
下列说法不正确的是( ) A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖 B.了解一批电视机的使用寿命适合用抽样调查 C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定 D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 |
5. 难度:中等 | |
菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( ) A.(3,1) B.(3,-1) C.(1,-3) D.(1,3) |
6. 难度:中等 | |
如图是一个无盖正方体盒子的表面展开图,A、B、C为图上三点,则在正方体盒子中,∠ABC的度数为( ) A.150° B.120° C.90° D.60° |
7. 难度:中等 | |
已知,x为整数,则M,N的大小关系是( ) A.M>N B.M=N C.M<N D.无法确定 |
8. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>2;③abc>0;④4a-2b+c<0;⑤c-a>1.其中所有正确结论的序号是( ) A.①② B.①③④ C.①②③⑤ D.①②③④⑤ |
9. 难度:中等 | |
在函数y=中,自变量x的取值范围是 . |
10. 难度:中等 | |
一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是 . |
11. 难度:中等 | |
一个圆锥的底面半径为4cm,将侧面展开后所得扇形的半径为5cm,那么这个圆锥的侧面积等于 cm2(结果保留π). |
12. 难度:中等 | |
若实数a满足a2-2a+1=0,则2a2-4a+5= . |
13. 难度:中等 | |
如图,直线y1=ax+b与y2=mx+n(a、b、m、n均为常数且a≠0,m≠0)交于点A,根据图象回答:关于x的不等式ax+b>mx+n的解集为 . |
14. 难度:中等 | |
如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,∠F=50°,则∠α的度数是 . |
15. 难度:中等 | |
如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需 个五边形. |
16. 难度:中等 | |
若两圆相切,圆心距是8,其中一圆的半径为10,则另一个圆的半径为 . |
17. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙O是△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA= . |
18. 难度:中等 | |
如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是 . |
19. 难度:中等 | |
(1)计算 +; (2)先化简,再求值:,其中a=-1. |
20. 难度:中等 | |
有三张背面完全相同的卡片,它们的正面分别写上、、,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张. (1)直接写出小丽取出的卡片恰好是的概率; (2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明. |
21. 难度:中等 | |
如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米. (1)求新传送带AC的长度; (2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45) |
22. 难度:中等 | |
如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB. (1)求证:△ADF∽△CAE; (2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积? |
23. 难度:中等 | |
某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题: (说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下) (1)请把条形统计图补充完整; (2)样本中D级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A级所在的扇形的圆心角度数是______; (4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为______人. |
24. 难度:中等 | ||||||||||
为了更好地治理市环城河水质,保护环境,市治污公司决定购买若干台污水处理设备,现有A、B两种型号的设备可供选购,其中每台设备的价格和每台设备处理的污水量如下表:
|
25. 难度:中等 | |
如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD交⊙O于点D,DE⊥BC,交BC的延长线于点E,BD交AC于点F. (1)求证:DE是⊙O的切线; (2)若CE=1,ED=2,求⊙O的半径. |
26. 难度:中等 | |
A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车两小时可到达途中C站,客车需9小时到达C站(如图1所示).货车的速度是客车的 ,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小时)之间的函数关系如图2所示. (1)求客、货两车的速度; (2)求两小时后,货车到C站的距离y2与行驶时间x之间的函数关系式; (3)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义. |
27. 难度:中等 | |
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点. (1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法); (2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数; (3)如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长. |
28. 难度:中等 | |
如图,在▱ABCD中,AB=6cm,AD=AC=5cm.点P由C出发沿CA方向匀速运动,速度为1cm/s;同时,线段EF由AB出发沿AD方向匀速运动,速度为1cm/s,交AC于Q,连接PE、PF.若设运动时间为t(s)(0<t<5).解答下列问题: (1)当t为何值时,PE∥CD?并求出此时PE的长; (2)试判断△PEF的形状,并请说明理由. (3)当0<t<2.5时, (ⅰ)在上述运动过程中,五边形ABFPE的面积______(填序号) ①变大 ②变小 ③先变大,后变小 ④不变 (ⅱ)设△PEQ的面积为y(cm2),求出y(cm2)与t(s)之间的函数关系式及y的取值范围. |