1. 难度:中等 | |
下列运算正确的是( ) A.x3+x2=x5 B.x3-x2= C.x3÷x2= D.x3•x2=x6 |
2. 难度:中等 | |
函数y=中,自变量x的取值范围是( ) A.x≠-2 B.x≠2 C.x<2 D.x>2 |
3. 难度:中等 | |
我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( ) A.8.5×1010元 B.8.5×1011元 C.0.85×1011元 D.0.85×1012元 |
4. 难度:中等 | |
某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是 ( ) A.30吨 B.31吨 C.32吨 D.33吨 |
5. 难度:中等 | |
(课改)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( ) A.3 B.4 C.5 D.6 |
6. 难度:中等 | |
如图,已知⊙O的两条弦AC,BD相交于点E,∠A=75°,∠C=45°,那么sin∠AEB的值为( ) A. B. C. D. |
7. 难度:中等 | |
下列命题:①同位角相等;②如果45°<α<90°,那么sinα>cosα;③若关于x的方程的解是负数,则m的取值范围为m<-4;④相等的圆周角所对的弧相等.其中假命题有( ) A.1个 B.2个 C.3个 D.4个 |
8. 难度:中等 | |
若不等式组有解,则a的取值范围是( ) A.a>-1 B.a≥-1 C.a≤1 D.a<1 |
9. 难度:中等 | |
如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从下面四个点M(3,3),N(3,-3),P(-3,0),Q(-3,1)中选择一个点,以A,B,C与该点为顶点的四边形是中心对称图形的个数有( ) A.1个 B.2个 C.3个 D.4个 |
10. 难度:中等 | |
图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则Pn-Pn-1的值为( ) A. B. C. D. |
11. 难度:中等 | |
因式分【解析】 x3-xy2= . |
12. 难度:中等 | |
两圆的半径分别为3和5,若两圆的公共点不超过1个,圆心距d的取值范围是 . |
13. 难度:中等 | |
如图,为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了 米.(即求AC的长) |
14. 难度:中等 | |
一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2;④方程kx+b=x+a的解是x=3中正确的是 .(填写序号) |
15. 难度:中等 | |
如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为 . |
16. 难度:中等 | |
有一组数:…,请观察它们的构成规律,用你发现的规律写出第n(n为正整数)个数为 . |
17. 难度:中等 | |
“五•一”节,某超市开展“有奖促销”活动,凡购物不少于30元的顾客均有一次转动转盘的机会,如图,转盘被分为8个全等的小扇形,当指针最终指向数字8时,该顾客获一等奖;当指针最终指向5或7时,该顾客获二等奖(若指针指向分界线则重转). 经统计,当天发放一、二等奖奖品共300份,那么据此估计参与此次活动的顾客为 人次. |
18. 难度:中等 | |
如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于 . |
19. 难度:中等 | |
(1)计算:(-2010)+(sin60°)-1-|tan30°-|+; (2)先化简:,若结果等于,求出相应x的值. |
20. 难度:中等 | |
如图:把一张给定大小的矩形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α=25°,求长方形卡片的周长.(精确到1mm,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5). |
21. 难度:中等 | |
杭州市为了解市民对已闭幕的西博会的总体印象,采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对西博会总体印象感到满意的人数绘制了下面的图(1)和图(2) 根据上图提供的信息回答下列问题: (1)被抽查的居民中,人数最多的年龄段是______岁; (2)已知被抽查的400人中有83%的人对西博会总体印象感到满意,求出31~40岁年龄段的满意人数有______人,并补全图2; (3)求出31~40岁年龄段的满意率为______. 注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100% |
22. 难度:中等 | |
如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且. (1)若双曲线的一个分支恰好经过点A,求双曲线的解析式; (2)若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′,试求图中阴影部分的面积(结果保留π). |
23. 难度:中等 | |
为了帮助日本地震灾区重建家园,某公司号召员工自愿捐款.请你根据两位经理的对话,计算出第一次捐款的人数. |
24. 难度:中等 | |
如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C. (1)用直尺和圆规画出该圆弧所在圆的圆心M的位置(不用写作法,保留作图痕迹). (2)若A点的坐标为(0,4),D点的坐标为(7,0),直线CD与⊙M的位置关系为______,再连接MA、MC,将扇形AMC卷成一个圆锥,求此圆锥的侧面积. |
25. 难度:中等 | |
如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E. (1)写出反比例函数和正比例函数的解析式; (2)试计算△COE的面积是△ODE面积的多少倍? |
26. 难度:中等 | |
小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示. (1)小李到达甲地后,再经过______小时小张到达乙地;小张骑自行车的速度是______千米/小时. (2)小张出发几小时与小李相距15千米? (3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案) |
27. 难度:中等 | |
如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点. (1)求二次函数的解析式. (2)求出图中阴影部分的面积. (3)求切线OM的函数解析式. (4)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似?若存在,请求出点P的坐标;若不存在,请说明理由. |
28. 难度:中等 | |
如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式; (3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由. |