1. 难度:中等 | |
的值为( ) A.-1 B.-3 C.1 D.0 |
2. 难度:中等 | |
下列运算正确的是( ) A.2x+3y=5xy B.a3-a2=a C.a-(a-b)=-b D.(a-1)(a+2)=a2+a-2 |
3. 难度:中等 | |
要使分式有意义,则x应满足的条件是( ) A.x≠1 B.x≠-1 C.x≠0 D.x>1 |
4. 难度:中等 | |
关于x的方程(a-5)x2-4x-1=0有实数根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 |
5. 难度:中等 | |
如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O,若CD=3,AB=5,则AC的长为( ) A. B.4 C. D. |
6. 难度:中等 | |
如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为( ) A.3 B.4 C.5 D.6 |
7. 难度:中等 | |
已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是( ) A.1 cm B.5 cm C.1 cm或5 cm D.0.5cm或2.5cm |
8. 难度:中等 | |
已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为( ) A.1或-2 B.2或-1 C.3 D.4 |
9. 难度:中等 | |
如图,已知在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于( ) A.6π B.9π C.12π D.15π |
10. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx-ac与反比例函数在同一坐标系内的图象大致为( ) A. B. C. D. |
11. 难度:中等 | |
因式分【解析】 2mx2-4mx+2m= . |
12. 难度:中等 | |
观察等式:①9-1=2×4;②25-1=4×6;③49-1=6×8…按照这种规律写出第n个等式: . |
13. 难度:中等 | |
如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= . |
14. 难度:中等 | |
如图,扇形OAB,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是 . |
15. 难度:中等 | |
解不等式组. |
16. 难度:中等 | |
解方程: |
17. 难度:中等 | |
2010年春季我国西南大旱,导致大量农田减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克? |
18. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD. (1)求sin∠DBC的值; (2)若BC长度为4cm,求梯形ABCD的面积. |
19. 难度:中等 | |
如图,直线y=kx-1与x轴、y轴分别交于B、C两点,tan∠OCB=. (1)求B点的坐标和k的值; (2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式; (3)探索:在(2)的条件下: ①当点A运动到什么位置时,△AOB的面积是; ②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由. |
20. 难度:中等 | |
如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E. (1)求证:点D是BC的中点; (2)判断DE与⊙O的位置关系,并证明你的结论; (3)如果⊙O的直径为9,cosB=,求DE的长. |
21. 难度:中等 | |
中央电视台举办的第14届“蓝色经典•天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛. (1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示); (2)求首场比赛出场的两个队都是部队文工团的概率P? |
22. 难度:中等 | |
如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号) |
23. 难度:中等 | |
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4), C(2,0)三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值. (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. |