1. 难度:中等 | |
下面数中是无理数的是( ) A.-6 B. C. D.3 |
2. 难度:中等 | |
计算2x3•x2的结果是( ) A.2 B.2x5 C.2x6 D.x5 |
3. 难度:中等 | |
下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. |
4. 难度:中等 | |
如图:已知AB∥CD,∠1=105°,∠2=140°,则∠3的度数是( ) A.35° B.105° C.65° D.90° |
5. 难度:中等 | |
下列判断最合理的是( ) A.“打开电视机,正在播NBA篮球赛”是必然事件 B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上 C.小明统计了我校初三10名同学的一分钟跳绳成绩,平均得分为18分,小明据此判断,今年我校初三中考体育的跳绳平均得分为18分 D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定 |
6. 难度:中等 | |
如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是( ) A.38° B.19° C.76° D.24° |
7. 难度:中等 | |
如图所示几何体的主视图是( ) A. B. C. D. |
8. 难度:中等 | |
如图,在矩形ABCD中,点E是对角线AC的三等分点(靠近点以),动点F从点C出发沿C→A→B运动,当点F与点B重合时停止运动.设点F运动的路程为x,△BEF的面积为y,那么能表示y与x函数关系的大致图象( ) A. B. C. D. |
9. 难度:中等 | |
如图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有( )个单位正方形. A.39 B.40 C.41 D.42 |
10. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>2;③abc>0;④4a-2b+c<0;⑤c-a>1.其中所有正确结论的序号是( ) A.①② B.①③④ C.①②③⑤ D.①②③④⑤ |
11. 难度:中等 | |
科技部近日下达的“十二五”国家科技计划,重庆市共有9个项目被列入计划,获得国拨经费8282万元,居西部地区首位.数据8282万用科学记数法表示为 万. |
12. 难度:中等 | |
如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若S△ADE:S梯形BCED=9:7,AE=6,则AC等于 . |
13. 难度:中等 | |
已知一组数据:11,15,13,12,15,15,16,15.这组数据的中位数和众数分别是 . |
14. 难度:中等 | |
已知一扇形弧长为4π,直径为8,则它的圆心角是 °. |
15. 难度:中等 | |
在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为a的值,将该数字加2作为b的值,则(a,b)使得关于x的不等式组恰好有两个整数解的概率是 . |
16. 难度:中等 | |
从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 . |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
解方程: |
19. 难度:中等 | |
已知:如图,梯形ABCD中,AB∥CD,E是BC中点,AE、DC的延长线相交于点F. 求证:AB=CF. |
20. 难度:中等 | |
如图,一巡逻艇航行至海面B处时,得知其正北方向上C处一渔船发生故障.已知港口A处在B处的北偏西38°方向上,距B处20海里;C处在A处的北偏东65°方向上.求B,C之间的距离(结果精确到1海里). 参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14. |
21. 难度:中等 | |
先化简,再求值:,其中. |
22. 难度:中等 | |
如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(-2,3),BC⊥x轴于C,四边形OABC面积为4. (1)求反比例函数和一次函数的解析式; (2)求点D的坐标; (3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果) |
23. 难度:中等 | |||||||||||||
某班有50名同学,男、女生人数各占一半,在本周操行评定中操行得分情况如图(1)统计表中所示,图(2)是该班本周男生操行得分的条形统计图:
(1)补全统计表和条形统形图; (2)计算全班同学的操行平均得分; (3)若要在操行得分为5分的4名同学中选出两名同学作“本周明星”,用画树状图或列表的方法求出选为“本周明星”的正好是一名男同学和一名女同学的概率. |
24. 难度:中等 | |
已知,如图,正方形ABCD,菱形EFGP,点E、F、G分别在AB、AD、CD上,延长DC,PH⊥DC于H. (1)求证:GH=AE; (2)若菱形EFGP的周长为20cm,,FD=2,求△PGC的面积. |
25. 难度:中等 | |
大学生李某投资在沙坪坝学校密集的沙南街路段投资开办了一个学生文具店.该店在开学前8月31日采购进一种今年新上市的文具袋.9月份(9月1日至9月30日)进行30天的试销售,购进价格为20元/个.销售结束后,得知日销售量y(个)与销售时间x(天)之间有如下关系:y=-2x+80(1≤x≤30,且x为整数);又知销售价格z(元/个)与销售时间x(天)之间的函数关系满足如图所示的函数图象. (1)求z关于x的函数关系式; (2)求出在这30天(9月1日至9月30日)的试销中,日销售利润ω(元)与销售时间x(天)之间的函数关系式; (3)“十一”黄金周期间,李某采用降低售价从而提高日销售量的销售策略.10月1日全天,销售价格比9月30日的销售价格降低a%而日销售量就比9月30日提高了6a%(其中a为小于15 的正整数),日销售利润比9月份最大日销售利润少569元,求a的值.(参考数据:502=2500,512=2601,522=2704) |
26. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t=2时,AP=______,点Q到AC的距离是______; (2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由; (4)当DE经过点C时,请直接写出t的值. |