1. 难度:中等 | |
-3的倒数是( ) A. B. C.± D.3 |
2. 难度:中等 | |
下列各式中,运算正确的是( ) A.a6÷a3=a2 B.(a3)2=a5 C.2+3=5 D.÷= |
3. 难度:中等 | |
在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52 850万吨,创历史最高水平.将52 850用科学记数法表示应为( ) A.5285×10 B.52.85×103 C.5.285×103 D.5.285×104 |
4. 难度:中等 | |||||||||||||
为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:
A.25.5厘米,26厘米 B.26厘米,25.5厘米 C.25.5厘米,25.5厘米 D.26厘米,26厘米 |
5. 难度:中等 | |
已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是( ) A. B. C. D. |
6. 难度:中等 | |
如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是( ) A. B. C.8 D.1 |
7. 难度:中等 | |
如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a、b(a>b),则这两个图形能验证的式子是( ) A.(a+b)2-(a-b)2=4ab B.(a2+b2)-(a-b)2=2ab C.(a+b)2-2ab=a2+b2 D.(a+b)(a-b)=a2-b2 |
8. 难度:中等 | |
沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是( ) A. B. C. D. |
9. 难度:中等 | |
小华的爷爷每天坚持体育锻炼,某天他漫步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是( ) A. B. C. D. |
10. 难度:中等 | |
方程(x-3)(x+1)=x-3的解是( ) A.x=0 B.x=3 C.x=3或x=-1 D.x=3或x=0 |
11. 难度:中等 | |
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是( ) A. B. C. D. |
12. 难度:中等 | |
如图,圆锥的轴截面△ABC是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC=4cm,母线AB=6cm,则由点B出发,经过圆锥的侧面到达母线AC的最短路程是( ) A.cm B.6cm C.cm D.4cm |
13. 难度:中等 | |
如图,以原点为圆心的圆与反比例函数的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标( ) A.-3 B.-2 C.-1 D.-4 |
14. 难度:中等 | |
如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为( ) A. B. C. D. |
15. 难度:中等 | |
分解因式:2x3-8xy2= . |
16. 难度:中等 | |
在数轴上与表示的点的距离最近的整数点所表示的数是 . |
17. 难度:中等 | |
如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是 . |
18. 难度:中等 | |
如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为 . |
19. 难度:中等 | |
如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是的中点,若扇形的半径为2,则图中阴影部分的面积等于 . |
20. 难度:中等 | |
先化简,再求值:(-4)÷,其中x=-1. |
21. 难度:中等 | |
如图,是一台名为帕斯卡三角的仪器,当实心小球从入口落下,它依次碰到每层菱形挡块时,会等可能的向左或向右落下. (1)分别求出小球通过第2层的A位置、第3层的B位置、第4层的C位置、第5层的D位置的概率; (2)设菱形挡块的层数为n,则小球通过第n层的从左边算起第2个位置的概率是多少? |
22. 难度:中等 | |
我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号). |
23. 难度:中等 | |
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E. (1)求证:AB=AC; (2)求证:DE为⊙O的切线; (3)若⊙O的半径为5,∠BAC=60°,求DE的长. |
24. 难度:中等 | |
,某公司要将100吨货物运往某地销售,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车800元;租用1辆乙型汽车需费用850元,且同一种型号汽车每辆租车费用相同. 若公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用. |
25. 难度:中等 | |
如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长. |
26. 难度:中等 | |
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M. (1)求抛物线对应的函数表达式; (2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由; (3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由; (4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论). |