1. 难度:中等 | |
下列各数中,比-1小的数是( ) A.0 B.-2 C. D.1 |
2. 难度:中等 | |
要使代数式有意义,则x的取值范围是( ) A.x≥0 B.x<0 C.x≠0 D.x>0 |
3. 难度:中等 | |
一条公路两次转弯后又回到原来的方向(即AB∥CD,如图).如果第一次转弯时的∠B=140°,那么∠C应是( ) A.140° B.40° C.100° D.180° |
4. 难度:中等 | |
明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数 约为12 500 000,这个数用科学记数法表示为( ) A.1.25×105 B.1.25×106 C.1.25×107 D.1.25×108 |
5. 难度:中等 | |
如图所示的几何体中,俯视图形状相同的是( ) A.①④ B.②④ C.①②④ D.②③④ |
6. 难度:中等 | |
为了绿化荒山,某村计划在荒山上种植1200棵树.原计划每天种x棵,由于邻村的支援,每天比原计划多种了40棵,结果提前5天完成了任务.则可以列出方程为( ) A. B. C. D. |
7. 难度:中等 | |
定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( ) A. B. C. D. |
8. 难度:中等 | |
如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( ) A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1) |
9. 难度:中等 | |
如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为( ) A. B. C. D. |
10. 难度:中等 | |
如图,已知A、B是反比例函数(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为( ) A. B. C. D. |
11. 难度:中等 | |
把多项式2x2-8分解因式得: . |
12. 难度:中等 | |
为了解家庭丢弃塑料袋对环境造成的影响,某班研究性学习小组的六位同学记录了自己家中一周内丢弃塑料袋的数量.结果如下(单位:个):30,28,23,18,20,31.若该班有50名学生,请你估算本周全班同学的家共丢弃塑料袋 个. |
13. 难度:中等 | |
将一直径为17cm的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为 cm3. |
14. 难度:中等 | |
如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是 . |
15. 难度:中等 | |
计算:. |
16. 难度:中等 | |
解不等式:≤. |
17. 难度:中等 | |||||||||||||||||||||
某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.请把三个图表中的空缺部分都补充完整.
|
18. 难度:中等 | |
如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离. |
19. 难度:中等 | |
某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元. (1)若该商店两次调价的降价率相同,求这个降价率; (2)经调查,该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件? |
20. 难度:中等 | |
已知反比例函数(k≠0)和一次函数y=-x-6. (1)若一次函数和反比例函数的图象交于点(1,m),求m和k的值; (2)这两个函数图象的交点分别为A、B,请求出A、B两点的坐标(A在B的左边),并判断当反比例函数的函数值小于一次函数的函数值时,自变量x的取值范围(只要求直接写出结论). |
21. 难度:中等 | |
如图,∠1=∠2,∠B=∠D,AB=DE=5,BC=4. (1)求证:△ABC∽△ADE; (2)求AD的长. |
22. 难度:中等 | |
在平面上有且只有4个点,这4个点中有一个独特的性质:连接每两点可得到6条线段,这6条线段有且只有两种长度.我们把这四个点称作准等距点.例如正方形ABCD的四个顶点(如图1),有AB=BC=CD=DA,AC=BD.其实满足这样性质的图形有很多,如图2中A、B、C、O四个点,满足AB=BC=CA,OA=OB=OC;如图3中A、B、C、O四个点,满足OA=OB=OC=BC,AB=AC. (1)如图4,若等腰梯形ABCD的四个顶点是准等距点,且AD∥BC. ①写出相等的线段(不再添加字母); ②求∠BCD的度数. (2)请再画出一个四边形,使它的四个顶点为准等距点,并写出相等的线段. |
23. 难度:中等 | |
已知二次函数y=x2+bx-3的图象经过点P(-2,5) (1)求b的值并写出当1<x≤3时y的取值范围; (2)设P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图象上, ①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由; ②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由. |