1. 难度:中等 | |
在0,-2,3,四个数中,最小的数是( ) A.0 B.-2 C.3 D. |
2. 难度:中等 | |
如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( ) A.13πcm3 B.17πcm3 C.66πcm3 D.68πcm3 |
3. 难度:中等 | |
已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( ) A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109 |
4. 难度:中等 | |
下列计算正确的是( ) A.3-1=-3 B.a2•a3=a6 C.(x+1)2=x2+1 D. |
5. 难度:中等 | |
有一组数椐:3,4,5,6,6,则下列四个结论中正确的是( ) A.这组数据的平均数、众数、中位数分别是4.8,6,6 B.这組数据的平均数、众数、中位数分别是5,5,5 C.这组数据的平均数、众数、中位数分别是4.8,6,5 D.这组数据的平均数、众数、中位数分别是5,6,6 |
6. 难度:中等 | |
某品牌服装原价173元,连续两次降价x%后售价价为127元,下面所列方程中正确的是( ) A.173(1+x%)2=127 B.173(1-2x%)=127 C.173(1-x%)2=127 D.127(1+x%)2=173 |
7. 难度:中等 | |
如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为( ) A.8 B.9.5 C.10 D.11.5 |
8. 难度:中等 | |
一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( ) A. B. C. D. |
9. 难度:中等 | |
不等式组的解在数轴上表示为( ) A. B. C. D. |
10. 难度:中等 | |
如图为抛物线y=ax2+bx+c的图象,A,B,C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系正确的是( ) A.a+b=-1 B.a-b=-1 C.b<2a D.ac<0 |
11. 难度:中等 | |
下列命题中是真命题的是( ) A.如果a2=b2,那么a=b B.对角线互相垂直的四边形是菱形 C.线段垂直平分线上的点到这条线段的两个端点的距离相等 D.对应角相等的两个三角形全等 |
12. 难度:中等 | |
如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为斜边并且在AB的同一侧作等腰直角△ACD和△BCE,连接AE交CD于点M,连接BD交CE于点N,给出以下三个结论:①MN∥AB;②=+;③MN≤AB,其中正确结论的个数是( ) A.0 B.1 C.2 D.3 |
13. 难度:中等 | |
分解因式:3m(2x-y)2-3mn2= . |
14. 难度:中等 | |
如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q.则AB= . |
15. 难度:中等 | |
如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为 . |
16. 难度:中等 | |
如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是点 . |
17. 难度:中等 | |
计算:2cos30°+|-3|-(2010-π)+(-1)2012. |
18. 难度:中等 | |
解方程. |
19. 难度:中等 | |
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次调查中共调查了多少名学生? (2)求户外活动时间为1.5小时的人数,并补充频数分布直方图; (3)求表示户外活动时间1小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少? |
20. 难度:中等 | |
如图,AB是半圆O的直径,C为半圆上一点,E是BC的中点,AE交BC于点D,DF⊥AB于F,F为垂足,连接CF. (1)判断△CDF的形状,并证明你的结论; (2)若AC=8,cos∠CAB=,求线段BC和CD的长. |
21. 难度:中等 | |
如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE; (1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由; (2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M. ①求证:AG⊥CH; ②当AD=4,DG=时,求CH的长. |
22. 难度:中等 | |
国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系. (1)直接写出y2与x之间的函数关系式; (2)求月产量x的范围; (3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少? |
23. 难度:中等 | |
已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在此抛物线上,矩形面积为12, (1)求该抛物线的对称轴; (2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标; (3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由. |