1. 难度:中等 | |
一元二次方程x(x-2)=2-x的根是( ) A.-1 B.2 C.1和2 D.-1和2 |
2. 难度:中等 | |
下列各式中,正确的是( ) A. B. C. D. |
3. 难度:中等 | |
如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( ) A.2 B.2 C.4 D.4 |
4. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ) A.a>0 B.当x>1时,y随x的增大而增大 C.c<0 D.3是方程ax2+bx+c=0的一个根 |
5. 难度:中等 | |
如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( ) A.8 B.4 C.10 D.5 |
6. 难度:中等 | |
下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( ) A.甲比乙的成绩稳定 B.乙比甲的成绩稳定 C.甲、乙两人的成绩一样稳定 D.无法确定谁的成绩更稳定 |
7. 难度:中等 | |
已知二次函数的图象(-0.7≤x≤2)如图所示、关于该函数在所给自变量x的取值范围内,下列说法正确的是( ) A.有最小值1,有最大值2 B.有最小值-1,有最大值1 C.有最小值-1,有最大值2 D.有最小值-1,无最大值 |
8. 难度:中等 | |
如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是( ) A.四边形EDCN是菱形 B.四边形MNCD是等腰梯形 C.△AEM与△CBN相似 D.△AEN与△EDM全等 |
9. 难度:中等 | |
已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是 . |
10. 难度:中等 | |
在▱ABCD中,∠A=120°,则∠1= 度. |
11. 难度:中等 | |
如图,河堤横断面迎水坡AB的坡比是1:,则坡角∠A= °. |
12. 难度:中等 | |
如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA= °. |
13. 难度:中等 | |
某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为 . |
14. 难度:中等 | |
如图,△ABC中,AB=AC=13,BC=10,D为BC中点,DE⊥AB于E,则DE= . |
15. 难度:中等 | |
如图,梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=30°,则sin∠BAD= . |
16. 难度:中等 | |
如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面积之和为 cm2.(结果保留π). |
17. 难度:中等 | |
如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是 . |
18. 难度:中等 | |
边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为 (结果保留π). |
19. 难度:中等 | |
(1)计算:(+)(-1)-3tan30°-cos45° (2)已知关于x的方程kx2=2(1-k)x-k有两个实数根,求k的取值范围. |
20. 难度:中等 | |
如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF. (1)求证:四边形AECF是平行四边形; (2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长. |
21. 难度:中等 | |
某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题: (说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下) (1)请把条形统计图补充完整; (2)扇形统计图中D级所占的百分比是______; (3)扇形统计图中A级所在的扇形的圆心角度数是______; (4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为______人. |
22. 难度:中等 | |
在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字,2,4,-、小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标. (1)用列表法或画树状图,表示所有这些点的坐标; (2)小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在正比例函数y=x图象上方时小明获胜,否则小华获胜、你认为这个游戏公平吗?请说明理由. |
23. 难度:中等 | |
小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75) |
24. 难度:中等 | |
如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(-2,0)和点B,与y轴相交于点C,顶点D(1,-) (1)求抛物线对应的函数关系式; (2)求四边形ACDB的面积; (3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式. |
25. 难度:中等 | |
如图,AB是⊙O的直径,点A、C、D在⊙O上,过D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC. (1)判断直线BP和⊙O的位置关系,并说明你的理由; (2)当⊙O的半径为,AC=2,BE=1时,求BP的长. |
26. 难度:中等 | |
某专买店购进一批新型计算器,每只进价12元,售价20元多买优惠:凡一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元、例如:某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.设一次性购买计算器为x只,所获利润为y元. (1)若该专卖店在确保不亏本的前提下进行优惠销售,试求y与x(x>10)之间的函数关系式,并写出自变量x的取值范围; (2)若该专买店想获得200元的销售利润,又想让消费者多获得实惠,应将每只售价定为多少元? (3)某天,顾客甲买了42只新型计算器,顾客乙买了52只新型计算器,店主却发现卖42只赚的钱反而比卖52只赚的钱多,你能用数学知识解释这一现象吗? |
27. 难度:中等 | |
如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C. (1)求证:四边形ABCD是正方形; (2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由. (3)若EG=4,GF=6,BM=3,求AG、MN的长. |
28. 难度:中等 | |
如图a,在平面直角坐标系中,A(0,6),B(4,0) (1)按要求画图:在图a中,以原点O为位似中心,按比例尺1:2,将△AOB缩小,得到△DOC,使△AOB与△DOC在原点O的两侧;并写出点A的对应点D的坐标为______,点B的对应点C的坐标为______; (2)已知某抛物线经过B、C、D三点,求该抛物线的函数关系式,并画出大致图象; (3)连接DB,若点P在CB上,从点C向点B以每秒1个单位运动,点Q在BD上,从点B向点D以每秒1个单位运动,若P、Q两点同时分别从点C、点B点出发,经过t秒,当t为何值时,△BPQ是等腰三角形? |