1. 难度:中等 | |
温家宝总理强调“十二五”期间将新建保障性住房36000000套,用科学记数法表示应是( ) A.3.6×107 B.3.6×106 C.36×106 D.0.36×108 |
2. 难度:中等 | |
如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( ) A. B. C. D. |
3. 难度:中等 | |
图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是( ) A.π B.π C.4π D.条件不足,无法求 |
4. 难度:中等 | |
10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A. B. C. D. |
5. 难度:中等 | |
如图,已知一张纸片▱ABCD,∠B>90°,点E是AB的中点,点G是BC上的一个动点,沿EG将纸片折叠,使点B落在纸片上的点F处,连接AF,则下列各角中与∠BEG不一定相等的是( ) A.∠FEG B.∠AEF C.∠EAF D.∠EFA |
6. 难度:中等 | |
小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( ) A.8.6分钟 B.9分钟 C.12分钟 D.16分钟 |
7. 难度:中等 | |
如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( ) A.逐渐变大 B.逐渐变小 C.不变 D.不能确定 |
8. 难度:中等 | |
如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将▱OABC分割成面积相等的两部分,则直线l的函数解析式是( ) A.y=x+1 B. C.y=3x-3 D.y=x-1 |
9. 难度:中等 | |
在函数y=中,自变量x的取值范围是 . |
10. 难度:中等 | |
分解因式:xy2-x= . |
11. 难度:中等 | |
下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为 . |
12. 难度:中等 | |
如图,AB为⊙O直径,点C、D在⊙O上,已知∠AOD=50°,AD∥OC,则∠BOC= 度. |
13. 难度:中等 | |
如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为菱形,应添加的条件是 . |
14. 难度:中等 | |
小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是 cm2. |
15. 难度:中等 | |
已知双曲线,的部分图象如图所示,P是y轴正半轴上一点,过点P作AB∥x轴,分别交两个图象于点A,B.若PB=2PA,则k= . |
16. 难度:中等 | |
已知a≠0,S1=2a,,,…,,则S2012= (用含a的代数式表示). |
17. 难度:中等 | |
先化简再求值:,其中a满足a2-a=0. |
18. 难度:中等 | |
在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).点C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形. (1)画出△ABC,点C的坐标是______,△ABC的面积是______; (2)将△ABC绕点C旋转180°得到△A1B1C,连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由. |
19. 难度:中等 | |
一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同. (1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. |
20. 难度:中等 | |
如图,“五•一”期间在某商贸大厦上从点A到点B悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上,小明在四楼D点测得条幅端点A的仰角为30°,测得条幅端点B的俯角为45°;小雯在三楼仰角为45°,测得条幅端点B的俯角为30°.若设楼层高度CD为3米,请你根据小明和小雯测得的数据求出条幅AB的长. (结果精确到个位,参考数据=1.73) |
21. 难度:中等 | |
如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G. (1)∠BFG与∠BGF是否相等?为什么? (2)求由DG、GE和弧ED所围成图形的面积.(阴影部分) |
22. 难度:中等 | |
某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位. (1)该单位参加旅游的职工有多少人? (2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程) |
23. 难度:中等 | ||||||||||||||||
阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表1是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:
(2)求表1中A,B的值; (3)该校学生平均每人读多少本课外书? |
24. 难度:中等 | |
近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y(米)与售价x(元/米)之间存在着如图所示的一次函数关系,且40≤x≤70. (1)根据图象,求y与x之间的函数解析式; (2)设该销售公司一天销售这种型号电缆线的收入为w元. ①试用含x的代数式表示w; ②试问:当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高,最高是多少元? |
25. 难度:中等 | |
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合). (1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由; (2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由; (3)如图③,分别在AD、BC上取点F、C′,使得∠APF=∠BPC′,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△PBC′沿PC′翻折得到△PEC′,连接FC′,取FC′的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由. |
26. 难度:中等 | |
如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由. |