1. 难度:中等 | |
下列计算正确的是( ) A.-2+|-2|=0 B.2÷3=0 C.42=8 D.2÷3×=2 |
2. 难度:中等 | |
已知有六个数0.1427427427、4.010010001、、5π、、,其中无理数的个数是( ) A.4 B.3 C.2 D.1 |
3. 难度:中等 | |
数据7、9、8、10、6、10、8、9、7、10的众数是( ) A.7 B.8 C.9 D.10 |
4. 难度:中等 | |
下列语句中,属于命题的是( ) A.作线段的垂直平分线 B.等角的补角相等吗 C.平行四边形是轴对称图形 D.用三条线段去拼成一个三角形 |
5. 难度:中等 | |
已知:⊙O1的半径为3cm,⊙O2的半径为5cm,两圆的圆心距O1O2=8cm,则两圆的位置关系是( ) A.外离 B.外切 C.相交 D.内切 |
6. 难度:中等 | |
如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A.12个单位 B.10个单位 C.4个单位 D.15个单位 |
7. 难度:中等 | |
将图1的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图2所示.最后将图2的色纸剪下一纸片,如图3所示.若下列有一图形为图3的展开图,则此图为( ) A. B. C. D. |
8. 难度:中等 | |
在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值是( ) A. B. C. D. |
9. 难度:中等 | |
古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31 |
10. 难度:中等 | |
如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为( ) A.(2,6) B.(2,5) C.(6,2) D.(3,6) |
11. 难度:中等 | |
如图是小玲设计用手电来测量家附近“新华大厦”高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=24米,那么该大厦的高度约为( ) A.8米 B.16米 C.24米 D.36米 |
12. 难度:中等 | |
等腰三角形ABC中,AB=AC,BC=4,以BC中点为圆心作与两腰相切的圆,过圆上一点F作切线交AB、AC于D、E,则BD•CE的值是( ) A.4 B.8 C.12 D.缺条件,不能求 |
13. 难度:中等 | |
当x= 时,分式的值等于零. |
14. 难度:中等 | |
分解因式:xy2-x= . |
15. 难度:中等 | |
在分别写有数字:1,2,3,4,5的5张小卡片中,随机地抽出1张卡片,则抽出卡片上的数字是1的概率为 . |
16. 难度:中等 | |
定义新运算:对任意实数a、b,都有a⊗b=a2-b.例如3⊗2=32-2=7,那么2⊗1= . |
17. 难度:中等 | |
如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 cm. |
18. 难度:中等 | |
已知二次函数y=x2+bx-1,当x=4时的函数值与x=2007时的函数值相等,则x=2011时的函数值为 . |
19. 难度:中等 | |
先化简,再求值:,其中a=-1. |
20. 难度:中等 | |
在直角坐标系,四边形ABCD各个顶点的坐标分别是(-2,8),(-11,6),(-14,0),(0,0),求: (1)画出图形并求出四边形的面积; (2)如果把原来的四边形ABCD各个顶点的横坐标保持不变,纵坐标增加2,那么所得的四边形的面积又是多少呢? |
21. 难度:中等 | ||||||||||||||||
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
(1)表中m和n所表示的数分别为:m=______,n=______; (2)请在图中,补全频数分布直方图; (3)比赛成绩的中位数落在哪个分数段; (4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少? |
22. 难度:中等 | |
如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D, (1)求该一次函数的解析式; (2)求tan∠OCD的值. |
23. 难度:中等 | |
如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P. (1)求证:AC=CP; (2)若PC=6,求图中阴影部分的面积(结果精确到0.1). (参考数据:,π=3.14) |
24. 难度:中等 | |
已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB; (2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值; (3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长. |
25. 难度:中等 | |
阅读材料: 如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法: S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题: 如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式; (2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB; (3)是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由. |
26. 难度:中等 | |||||||||||
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:
(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-x2+bx+c,请求出5月份y与x的函数关系式; (3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少? |