1. 难度:中等 | |
-2的倒数是( ) A.2 B.-2 C. D. |
2. 难度:中等 | |
下列图形中,是中心对称图形的是( ) A. B. C. D. |
3. 难度:中等 | |
温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是( ) A.3.6×107 B.3.6×106 C.36×106 D.0.36×108 |
4. 难度:中等 | |
下列运算正确的是( ) A.(-2a2)3=-8a6 B.a3+a3=2a6 C.a6÷a3=a2 D.a3•a3=2a3 |
5. 难度:中等 | |
如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于( ) A.70° B.80° C.90° D.110° |
6. 难度:中等 | |
分解因式:4x2-1= . |
7. 难度:中等 | |
已知反比例函数的图象经过点(3,-4),则这个函数的解析式为 . |
8. 难度:中等 | |
已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 . |
9. 难度:中等 | |
如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是 . |
10. 难度:中等 | |
如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为 . |
11. 难度:中等 | |
计算:. |
12. 难度:中等 | |
解不等式组,并写出它的所有整数解. |
13. 难度:中等 | |||||||||||||
为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:
(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数. (3)该区0.8万名学生参加户外体育活动时间达标的约有多少人? |
14. 难度:中等 | |
某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶? |
15. 难度:中等 | |
某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300m,在A处测得望海楼B位于A的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C,在C处测得望海楼B位于C的北偏东60°方向,求此时游轮与望海楼之间的距离BC(取1.73,结果保留整数). |
16. 难度:中等 | |
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>. (1)若小静转动转盘一次,求得到负数的概率; (2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率. |
17. 难度:中等 | |
如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD丄AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF. (1)求证:DE是半圆的切线: (2)连接0D,当OC=BC时,判断四边形ODFA的形状,并证明你的结论. |
18. 难度:中等 | |
建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元? (2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案? (3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案? |
19. 难度:中等 | |
某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件. (1)写出销售量y件与销售单价x元之间的函数关系式; (2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式; (3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少? |
20. 难度:中等 | |
观察下列算式: ①1×3-22=3-4=-1 ②2×4-32=8-9=-1 ③3×5-42=15-16=-1 ④______ … (1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来; (3)你认为(2)中所写出的式子一定成立吗?并说明理由. |
21. 难度:中等 | |
如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系. (1)直接写出点M及抛物线顶点P的坐标; (2)求这条抛物线的解析式; (3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少? |
22. 难度:中等 | |
如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由. (3)当t为何值时,△DEF为直角三角形?请说明理由. |
23. 难度:中等 | |
已知x-2y=-2,则3-x+2y的值是( ) A.0 B.1 C.3 D.5 |
24. 难度:中等 | |
某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数、众数分别为( ) A.3.4 B.4.3 C.3.3 D.4.4 |
25. 难度:中等 | |
将图中所示表面带有图案的正方体沿某些棱展开后,得到的图形是( ) A. B. C. D. |
26. 难度:中等 | |
不等式组的解集是x>2,则a的取值范围是( ) A.a≤2 B.a≥2 C.a≤1 D.a>1 |
27. 难度:中等 | |
某市2011年5月1日-10日十天的空气污染指数的数据如下(主要污染物为可吸入颗粒物): 61,75,70,56,81,91,92,91,75,81. 那么该组数据的极差和中位数分别是( ) A.36,78 B.36,86 C.20,78 D.20,77.3 |
28. 难度:中等 | |
已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是( ) A.2, B.2,1 C.4, D.4,3 |
29. 难度:中等 | |
从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( ) A. B. C. D. |
30. 难度:中等 | |
如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( ) A.该班总人数为50人 B.骑车人数占总人数的20% C.步行人数为30人 D.乘车人数是骑车人数的2.5倍 |
31. 难度:中等 | |
有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为______. |
32. 难度:中等 | |
为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图: (1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整; (2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率. |
33. 难度:中等 | |
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率; (2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. |