1. 难度:中等 | |
-3的倒数是( ) A. B.-3 C.3 D. |
2. 难度:中等 | |
下列运算正确的是( ) A.x3+x2=x5 B.x3-x2= C.x3÷x2= D.x3•x2=x6 |
3. 难度:中等 | |
据《2010年三明市国民经济和社会发展统计公报》数据显示,截止2010年底,三明市民用汽车保有量约为98200辆,98200用科学记数法表示正确的是( ) A.9.82×103 B.98.2×103 C.9.82×104 D.0.982×104 |
4. 难度:中等 | |
下面四个几何体中,主视图与其它几何体的主视图不同的是( ) A. B. C. D. |
5. 难度:中等 | |
把不等式组的解集表示在数轴上,下列选项正确的是( ) A. B. C. D. |
6. 难度:中等 | |||||||||||||
某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周大约花钱数额进行了统计,如下表:
A.15,14 B.18,14 C.25,12 D.15,12 |
7. 难度:中等 | |
如图,等腰直角△ABC的直角边长为3,P为斜边BC上一点,且BP=1,D为AC上一点,若∠APD=45°,则CD的长为( ) A. B. C. D. |
8. 难度:中等 | |
如图1,在同一直线上,甲自点A开始追赶均速前进的乙,且图2表示两人之间的距离与所经过时间的函数关系.若乙的速度为1.5m/s,则经过40s,甲自点A移动了( ) A.60m B.61.8m C.67.2m D.69m |
9. 难度:中等 | |
如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( ) A.4cm B.6cm C.8cm D.10cm |
10. 难度:中等 | |
如图,点A(a,b)是抛物线上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=-bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有( ) A.1个 B.2个 C.3个 D.4个 |
11. 难度:中等 | |
当x=2时,分式的值是 . |
12. 难度:中等 | |
已知反比例函数的图象如图,则m的取值范围是 . |
13. 难度:中等 | |
一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是 . |
14. 难度:中等 | |
如图,小圆的圆心在原点,半径为3,大圆的心坐标为(a,0)半径为5.如果两圆内含,那么a的取值范围是 . |
15. 难度:中等 | |
如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为 . |
16. 难度:中等 | |
如图,将1~2025这2025个自然数按图中规律分别排列在网格中,除对角线AB经过的45个数外,其它的数被分成两部分,对角线AB右上方的990个数之和记为S1,对角线AB左下方的990个数之和记为S2.则S1-S2= . |
17. 难度:中等 | |
计算:+(-1)2009+(π-2). |
18. 难度:中等 | |
先化简,再求值:(1-)÷,其中a=-1. |
19. 难度:中等 | |
已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M. (1)求证:△ABF≌△DAE; (2)找出图中与△ABM相似的所有三角形(不添加任何辅助线). |
20. 难度:中等 | |||||||||||||
某校欲举办“校园吉尼斯挑战赛”,为此该校在三个年级中各随机抽取一个班级进行了一次“你最喜欢的挑战项目”的问卷调查,每名学生都选了一项、已知被调查的三个年级的学生人数均为50人,根据收集到的数据,绘制成如下统计图表(不完整): 七年级抽查班级“学生最喜欢的挑战项目”人数统计
根据统计图表中的信息,解答下列问题: (1)在本次随机调查中,七年级抽查班级中喜欢“跳绳”项目的学生有______人,九年级抽查班级中喜欢“乒乓球”项目的学生人数占本班人数的百分比为______; (2)请将条形统计图补充完整;(温馨提示:请画在答题卷相对应的上) (3)若该校共有900名学生(三个年级的学生人数都相等),请你估计该校喜欢“羽毛球”项目的学生总人数. |
21. 难度:中等 | |
在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°. (1)试通过计算,比较风筝A与风筝B谁离地面更高? (2)求风筝A与风筝B的水平距离.(精确到0.01m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732) |
22. 难度:中等 | |
如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC. (1)求证:CA是圆的切线; (2)若点E是BC上一点,已知BE=6,tan∠ABC=,tan∠AEC=,求圆的直径. |
23. 难度:中等 | ||||||||||
北京时间2011年3月11日13时46分,日本发生9.0级特大地震,某日资公司为筹集善款,对其日本原产品进行大幅度销售,有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大? |
24. 难度:中等 | |
已知,如图,二次函数y=ax2+2ax-3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称. (1)求A、B两点坐标,并证明点A在直线l上; (2)求二次函数解析式; (3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值. |