1. 难度:中等 | |
下列各式中,运算正确的是( ) A.a6÷a3=a2 B.(a3)2=a5 C.2+3=5 D.÷= |
2. 难度:中等 | |
如果,则( ) A.a< B.a≤ C.a> D.a≥ |
3. 难度:中等 | |
如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( ) A.32° B.58° C.68° D.60° |
4. 难度:中等 | |
用配方法解方程x2-2x-5=0时,原方程应变形为( ) A.(x+1)2=6 B.(x+2)2=9 C.(x-1)2=6 D.(x-2)2=9 |
5. 难度:中等 | |
下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. |
6. 难度:中等 | |
关于x的方程x2+2kx+k-1=0的根的情况描述正确的是( ) A.k为任何实数,方程都没有实数根 B.k为任何实数,方程都有两个不相等的实数根 C.k为任何实数,方程都有两个相等的实数根 D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 |
7. 难度:中等 | |
如图,是由8相同的小立方块搭成的几何体,它的三个视图是2×2的正方形.若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A.1 B.2 C.3 D.4 |
8. 难度:中等 | |
如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是( ) A.2 B.3 C.4 D.5 |
9. 难度:中等 | |
某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( ) A.0.6元 B.0.7元 C.0.8元 D.0.9元 |
10. 难度:中等 | |
如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有( ) A.1个 B.2个 C.3个 D.0个 |
11. 难度:中等 | |
分解因式x(x+4)+4的结果 . |
12. 难度:中等 | |
据初步统计,2012年襄阳市今年报名参加中考应届毕业生24168人,报考人数24168精确到千位取近似值约为 . |
13. 难度:中等 | |
已知一组数据a、b、c、d、e方差为2,则另一组数据3a、3b、3c、3d、3e方差为 . |
14. 难度:中等 | |
如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是 . |
15. 难度:中等 | |
从-2,-1,0,1,2这五个数中任取一个数,作为关于x的一元二次方程x2-x+k=0中的k值,则所得的方程中有两个不相等的实数根的概率是 . |
16. 难度:中等 | |
如图,小圆的圆心在原点,半径为3,大圆的心坐标为(a,0)半径为5.如果两圆内含,那么a的取值范围是 . |
17. 难度:中等 | |
如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是 .(只要求填写正确命题的序号) |
18. 难度:中等 | |
计算:|2-tan60°|-(π-3.14)+()-2+ |
19. 难度:中等 | |
先化简,再求值:,其中x满足x2-3x+2=0. |
20. 难度:中等 | |
2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查悄况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题 (1)该记者本次一共调查了______名司机. (2)求图甲中④所在扇形的圆心角,并补全图乙. (3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率. (4)请估计开车的10万名司机中,不违反“酒驾“禁令的人数. |
21. 难度:中等 | |
为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率; (2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房. |
22. 难度:中等 | |
如图函数y1=k1x+b的图象与函数y2=(x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1),C点坐标为(0,3). (1)求函数y1的表达式和B点坐标; (2)观察图象,比较当x>0时,y1和y2的大小. |
23. 难度:中等 | |
两个全等的直角三角形重叠放在直线l上,如图(1),AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线l上左右平移,如图(2)所示. (1)求证:四边形ACFD是平行四边形; (2)怎样移动Rt△ABC,使得四边形ACFD为菱形; (3)将Rt△ABC向左平移4cm,求四边形DHCF的面积. |
24. 难度:中等 | |
已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D. (1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由; (2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π) |
25. 难度:中等 | |
为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过84万元,预计二期工程完成后每月将产生不少于1300吨污水. (1)请你计算每台甲型设备和每台乙型设备的价格各是多少元? (2)请你求出用于二期工程的污水处理设备的所有购买方案; (3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费) |
26. 难度:中等 | |
如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D. (1)求b,c的值; (2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标; (3)在(2)的条件下: ①求以点E、B、F、D为顶点的四边形的面积; ②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由. |