1. 难度:中等 | |
下列计算正确的是( ) A. B.x6÷x3=x2 C.|-3|=±3 D.a2•(-a)2=a4 |
2. 难度:中等 | |
某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.5.18×1010 B.51.8×109 C.0.518×1011 D.5.18×108 |
3. 难度:中等 | |
下面图形中,对称性与其他图形不同的是( ) A. B. C. D. |
4. 难度:中等 | |
如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A.AB=CD B.AD=BC C.AB=BC D.AC=BD |
5. 难度:中等 | |
三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( ) A.14 B.12 C.12或14 D.以上都不对 |
6. 难度:中等 | |||||||||||||||||||
10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm)如下表所示:
A.=,S甲2>S乙2 B.=,S甲2<S乙2 C.>,S甲2>S乙2 D.<,S甲2>S乙2 |
7. 难度:中等 | |
如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为( ) A.2 B. C.2 D.4 |
8. 难度:中等 | |
小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是( ) A. B. C. D. |
9. 难度:中等 | |
如果2是一元二次方程x2+bx+2=0的一个根,那么常数b的值为 . |
10. 难度:中等 | |
在函数y=中,自变量x的取值范围是 . |
11. 难度:中等 | |
对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= . |
12. 难度:中等 | |
如图,为安全起见,幼儿园打算加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D,B,C在同一水平地面上,那么加长后的滑梯AD的长是 m. |
13. 难度:中等 | |
如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是 度. |
14. 难度:中等 | |
如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上一点P,若EF=3,则梯形ABCD的周长为 . |
15. 难度:中等 | |
如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为 cm2. |
16. 难度:中等 | |
(1)计算:+sin60°-+() (2)先化简(1-)÷,然后选一个你喜爱,而又使原式有意义的数代入求值. |
17. 难度:中等 | |
已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,且∠1=∠2. (1)填空:图中与△BEF全等的三角形是______,与△BEF相似的三角形是______(不再添加任何辅助线); (2)对(1)中的两个结论选择其中一个给予证明. |
18. 难度:中等 | |
如图,A、B两点在函数y=(x>0)的图象上. (1)求m的值及直线AB的解析式; (2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数. |
19. 难度:中等 | |
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积. (1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率; (2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平. |
20. 难度:中等 | |
北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68 000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%) |
21. 难度:中等 | |
阅读材料,解答问题. 例 用图象法解一元二次不等式:.x2-2x-3>0 【解析】 设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上. 又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3. ∴由此得抛物线y=x2-2x-3的大致图象如图所示. 观察函数图象可知:当x<-1或x>3时,y>0. ∴x2-2x-3>0的解集是:x<-1或x>3. (1)观察图象,直接写出一元二次不等式:x2-2x-3>0的解集是______; (2)仿照上例,用图象法解一元二次不等式:x2-1>0. |
22. 难度:中等 | |
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合). (1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐______.(填“不变”、“变大”或“变小”) (2)刘卫同学经过进一步地研究,编制了如下问题: 问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行? 问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形? 问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程. |
23. 难度:中等 | |
已知,如图,已知点A的坐标是(,0),点B的坐标是(,0),以AB为直径作⊙M,交y轴的负半轴于点C,交y正半轴于点D,连接AC、BC,过A、B、C三点作抛物线. (1)求该抛物线的解析式; (2)连接D M并延长交⊙M于点E,过点E作⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式; (3)在抛物线上是否存在这样的点P,使得以A、B、C、P为顶点的四边形是梯形?若存在,请直接写出所有满足条件的点P的坐标,若不存在,请说明理由. |