1. 难度:中等 | |
计算的值为( ) A.±4 B.±2 C.4 D.2 |
2. 难度:中等 | |
观察标志,从图案看既是轴对称图形又是中心对称图形的有( ) A.1个 B.2个 C.3个 D.4个 |
3. 难度:中等 | |
如图所示,下列选项中,正六棱柱的左视图是( ) A. B. C. D. |
4. 难度:中等 | |
一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是( ) A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=8 |
5. 难度:中等 | |
下列调査中,适合采用全面调査(普査)方式的是( ) A.对綦江河水质情况的调査 B.对端午节期间市场上粽子质量情况的调査 C.对某班50名同学体重情况的调査 D.对某类烟花爆竹燃放安全情况的调査 |
6. 难度:中等 | |
已知圆锥的侧面积为8πcm2,侧面展开图的圆心角为45°,则该圆锥的母线长为( ) A.64cm B.8cm C.2cm D.cm |
7. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是( ) A. B. C. D. |
8. 难度:中等 | |
如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为( ) A.(0,5) B.(0,5) C.(0,) D.(0,) |
9. 难度:中等 | ||||||||||||
如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为( )
A.2 B.-3 C.0 D.1 |
10. 难度:中等 | |
如图,在梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA、BC、DC为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间数量的关系是( ) A.S1+S2=S3 B. C. D. |
11. 难度:中等 | |
地球上的海洋面积约为361000000km2,则科学记数法可表示为 km2. |
12. 难度:中等 | |
分解因式:3x2-27= . |
13. 难度:中等 | |
在函数中,自变量x的取值范围是 . |
14. 难度:中等 | |
乐乐和爸爸到广场散步,爸爸的身高是176cm,乐乐的身高是156cm,在同一时刻爸爸的影长是44cm,那么乐乐的影长是 cm. |
15. 难度:中等 | |
已知a,b为一元二次方程x2+2x-9=0的两个根,那么a2+a-b的值为 . |
16. 难度:中等 | |
一组数据-1,0,5,3,x,-2的平均数是1,则这组数据的中位数是 . |
17. 难度:中等 | |
如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF= 度. |
18. 难度:中等 | |
如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标 . |
19. 难度:中等 | |
(1)计算:; (2)先化简,再求值:(+1)÷,其中a=2+. |
20. 难度:中等 | |
解分式方程:. |
21. 难度:中等 | |
为了了解我县初中学生体育活动情况,随机调查了720名八年级学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题: (1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少? (2)“没时间”锻炼的人数是多少?并补全频数分布直方图; (3)2012年我县八年级学生约为1.2万人,按此调查,可以估计2012年我县八年级学生中每天锻炼未超过1小时的学生约有多少万人? |
22. 难度:中等 | |
甲楼在乙楼的南面,它们的高AB=CD=20米,该地区冬天的阳光与水平面的夹角为30度. (1)若两楼相距20米,则甲楼的影子落在乙楼上有多高? (2)要使甲楼的影子不会落在乙楼上,建筑时,两楼之间的距离至少是多少米? |
23. 难度:中等 | |
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF. (1)求证:直线BF是⊙O的切线; (2)若AB=6,BF=8,求tan∠CBF. |
24. 难度:中等 | ||||||||||||||||||||||||||||||||||||||||||||||||||
小明和小颖做掷骰子的游戏,规则如下: ①游戏前,每人选一个数字; ②每次同时掷两枚均匀骰子; ③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜. (1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果: (2)小明选的数字是5,小颖选的数字是8.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
|
25. 难度:中等 | |
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题: (1)分别求出直线BB′和抛物线所表示的函数解析式; (2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由; (3)将抛物线进行平移(沿上下或左右方向),使它经过点C′,求此时抛物线的解析式. |
26. 难度:中等 | |
外滩小区准备新建50个停车车位,解决小区停车难问题.已知新建一个地上停车位和一个地下停车位共需0.6万元,新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元? (2)若该小区预计投资金额超过9万元而不超过11万元,则共有几种建造方案? (3)若每个地上停车位月租金100元,每个地下停车位月租金200元,在(2)的条件下,已知新建车位全部租出且依靠租金要在16个月内(包括16个月)收回投资,试确定车位建造方案? |
27. 难度:中等 | |
如图1,在底面积为100cm2、高为20cm的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h与注水时间t之间的函数关系如图2所示. (1)写出函数图象中点A、点B的实际意义; (2)求烧杯的底面积; (3)若烧杯的高为9cm,求注水的速度及注满水槽所用的时间. |
28. 难度:中等 | |
如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,2),∠BCO=60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒. (1)求OH的长; (2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少; (3)设PQ与OB交于点M. ①当△OPM为等腰三角形时,求(2)中S的值. ②探究线段OM长度的最大值是多少,直接写出结论. |